616 research outputs found
Network Cournot Competition
Cournot competition is a fundamental economic model that represents firms
competing in a single market of a homogeneous good. Each firm tries to maximize
its utility---a function of the production cost as well as market price of the
product---by deciding on the amount of production. In today's dynamic and
diverse economy, many firms often compete in more than one market
simultaneously, i.e., each market might be shared among a subset of these
firms. In this situation, a bipartite graph models the access restriction where
firms are on one side, markets are on the other side, and edges demonstrate
whether a firm has access to a market or not. We call this game \emph{Network
Cournot Competition} (NCC). In this paper, we propose algorithms for finding
pure Nash equilibria of NCC games in different situations. First, we carefully
design a potential function for NCC, when the price functions for markets are
linear functions of the production in that market. However, for nonlinear price
functions, this approach is not feasible. We model the problem as a nonlinear
complementarity problem in this case, and design a polynomial-time algorithm
that finds an equilibrium of the game for strongly convex cost functions and
strongly monotone revenue functions. We also explore the class of price
functions that ensures strong monotonicity of the revenue function, and show it
consists of a broad class of functions. Moreover, we discuss the uniqueness of
equilibria in both of these cases which means our algorithms find the unique
equilibria of the games. Last but not least, when the cost of production in one
market is independent from the cost of production in other markets for all
firms, the problem can be separated into several independent classical
\emph{Cournot Oligopoly} problems. We give the first combinatorial algorithm
for this widely studied problem
Immersive training weeks in doctoral education
Ph.D. training worldwide, including Doctoral education in Marketing or Engineering fields, has been in trouble for some time. These last turbulent times (pandemic, energy, inflation, and war crises) have only increased the problems previously reported by the 3rd cycle students and early career researchers, including chronic lack of support and poor-quality supervision, with senior researchers rarely trained in mentorship. It is also reported that Ph.D. candidates are inadequately prepared for the cross-disciplinary working and large teams that characterize cutting-edge science today. In the last two decades, opposite decisions took place in Europe concerning the curricula of Doctoral programs. In the 2010s, a large number of classes was added to the Ph.D.s, contributing to almost residual time for thesis research in the first year of the programs. However, ten years later, an abrupt change took place and almost all classes were removed from the Ph.D. curricula, creating a void in (hard and soft skills) training and leaving all the responsibility of training to the supervisor. Ph.D. students reported guidance and isolation issues in the first year. Moreover, today’s little Ph.D. training is fully dedicated to the obtention of their Ph.D. and not to their role in society after the Ph.D. defense. This work discusses a new approach to doctoral education which started first at a professional doctorate implemented at University of Aveiro, Portugal, where few classes take place. This approach considers a novel Ph.D. training, both hard and soft skills development, through special intensive weeks, called Immersive Weeks. In these, distributed during the first year, Ph.D. students exclusively participate in several workshops, acquiring the tools for accomplishing both a successful Ph.D. and a future job. Pilots of this approach took place at the University of Aveiro with large success, while some improvement suggestions have also been pointed out by students.publishe
Energy transfer in single molecular photonic wires
Molecular photonics is a new emerging field of research around the premise that it is possible to develop optical devices using single molecules as building blocks. Truly technological impact in the field requires focussed efforts on designing functional molecular devices as well as having access to their photonic properties on an individual basis. In this Minireview we discuss our approach towards the design and single-molecule investigation of one-dimensional multimolecular arrays intended to work as molecular photonic wires. Three different schemes have been explored: a) perylene-based dimer and trimer arrays displaying coherent exciton delocalisation at room temperature; b) DNA-based unidirectional molecular wires containing up to five different chromophores and exhibiting weak excitonic interactions between neighbouring dyes; and c) one-dimensional multichromophoric polymers based on perylene polyisocyanides showing excimerlike emission. As a whole, our single-molecule data show the importance of well-defined close packing of chromophores for obtaining optimal excitonic behaviour at room temperature. Further improvement on (bio)chemical synthesis, together with the use of single-molecule techniques, should lead in the near future to efficient and reliable photonic wires with true device functionality
I-AUV Docking and Panel Intervention at Sea
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea.This work was supported by the Spanish project DPI2014-57746-C3 (MERBOTS Project) and
by Generalitat Valenciana under Grant GVA-PROMETEO/2016/066. The University of Girona wants to thank the
SARTI group for their collaboration with the TRITON project
Reconfigurable AUV for Intervention Missions: A Case Study on Underwater Object Recovery
Starting in January 2009, the RAUVI (Reconfigurable Autonomous Underwater Vehicle for Intervention Missions) project is a 3-year coordinated research action funded by the Spanish Ministry of Research and Innovation. In this paper, the state of progress after 2 years of continuous research is reported. As a first experimental validation of the complete system, a search and recovery problem is addressed, consisting of finding and recovering a flight data recorder placed at an unknown position at the bottom of a water tank. An overview of the techniques used to successfully solve the problem in an autonomous way is provided. The obtained results are very promising and are the first step toward the final test in shallow water at the end of 2011
N-(4-Methoxy-2-nitrophenyl)hexadecanamide, a palmitoylethanolamide analogue, reduces formalin-induced nociception
Main methods: The formalin test was used to assess the antinociceptive activity of HD in vivo. The hydrolysis of anandamide catalyzed by fatty acid amide hydrolase (FAAH) was used to determine the action of HD on FAAH activity in vitro. Key findings: Local peripheral ipisilateral, but not contralateral, administration of HD (10-100 μg/paw) produced a dose-dependent antinociceptive effect in rats. The CB 1 and CB 2 receptor antagonists AM281 (0.3-30 μg/paw) and SR144528 (0.3-30 μg/paw), respectively, reduced the antinociceptive effect of HD (100 μg/paw). In addition, methiothepin (0.03-0.3 μg/paw) and naloxone (5-50 μg/paw) significantly reduced HD-induced antinociception (100 μg/paw). In vitro, HD reduced only to a minor extent the hydrolysis of anandamide catalyzed by FAAH. Significance: HD local administration produces antinociception that probably results from an indirect activation of peripheral CB 1 and CB 2 cannabinoid receptors. Data suggest that 5-HT 1 and opioid receptors also participate in the antinociceptive effect of this compound. HD may have potential as analgesic drug
Multiple country and breed genomic prediction of tick resistance in beef cattle
Ticks cause substantial production losses for beef and dairy cattle. Cattle resistance to ticks is one of the most important factors affecting tick control, but largely neglected due to the challenge of phenotyping. In this study, we evaluate the pooling of tick resistance phenotyped reference populations from multi-country beef cattle breeds to assess the possibility of improving host resistance through multi-trait genomic selection. Data consisted of tick counts or scores assessing the number of female ticks at least 4.5Â mm length and derived from seven populations, with breed, country, number of records and genotyped/phenotyped animals being respectively: Angus (AN), Brazil, 2,263, 921/1,156, Hereford (HH), Brazil, 6,615, 1,910/2,802, Brangus (BN), Brazil, 2,441, 851/851, Braford (BO), Brazil, 9,523, 3,062/4,095, Tropical Composite (TC), Australia, 229, 229/229, Brahman (BR), Australia, 675, 675/675, and Nguni (NG), South Africa, 490, 490/490. All populations were genotyped using medium density Illumina SNP BeadChips and imputed to a common high-density panel of 332,468 markers. The mean linkage disequilibrium (LD) between adjacent SNPs varied from 0.24 to 0.37 across populations and so was sufficient to allow genomic breeding values (GEBV) prediction. Correlations of LD phase between breeds were higher between composites and their founder breeds (0.81 to 0.95) and lower between NG and the other breeds (0.27 and 0.35). There was wide range of estimated heritability (0.05 and 0.42) and genetic correlation (-0.01 and 0.87) for tick resistance across the studied populations, with the largest genetic correlation observed between BN and BO. Predictive ability was improved under the old-young validation for three of the seven populations using a multi-trait approach compared to a single trait within-population prediction, while whole and partial data GEBV correlations increased in all cases, with relative improvements ranging from 3% for BO to 64% for TC. Moreover, the multi-trait analysis was useful to correct typical over-dispersion of the GEBV. Results from this study indicate that a joint genomic evaluation of AN, HH, BN, BO and BR can be readily implemented to improve tick resistance of these populations using selection on GEBV. For NG and TC additional phenotyping will be required to obtain accurate GEBV
Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide
- …