32 research outputs found

    TRPV4 channels mediate the infrared laser-evoked response in sensory neurons

    Get PDF
    Infrared laser irradiation has been established as an appropriate stimulus for primary sensory neurons under conditions where sensory receptor cells are impaired or lost. Yet, development of clinical applications has been impeded by lack of information about the molecular mechanisms underlying the laser-induced neural response. Here, we directly address this question through pharmacological characterization of the biological response evoked by midinfrared irradiation of isolated retinal and vestibular ganglion cells from rodents. Whole cell patch-clamp recordings reveal that both voltage-gated calcium and sodium channels contribute to the laser-evoked neuronal voltage variations (LEVV). In addition, selective blockade of the LEVV by micromolar concentrations of ruthenium red and RN 1734 identifies thermosensitive transient receptor potential vanilloid channels as the primary effectors of the chain reaction triggered by midinfrared laser irradiation. These results have the potential to facilitate greatly the design of future prosthetic devices aimed at restoring neurosensory capacities in disabled patients

    Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization

    Get PDF
    Phosphonate-functionalized polymer nanoparticles were synthesized by free-radical copolymerization of vinylphosphonic acid (VPA) with styrene or methyl methacrylate (MMA) using the miniemulsion technique. The influence of different parameters such as monomer and surfactant type, amount of vinylphosphonic acid on the average particle size, and size distribution was studied using dynamic light scattering and transmission electron microscopy. Depending on the amount and type of the surfactant used (ionic or non-ionic), phosphonate-functionalized particles in a size range from 102 to 312 nm can be obtained. The density of the phosphonate groups on the particle surface was higher in the case of using MMA as a basis monomer than polystyrene. The kinetic behavior of VPA copolymerization with styrene or MMA using a hydrophobic initiator was investigated by reaction calorimetry. Different kinetic curves were observed for miniemulsion (co)polymerization of styrene- and MMA-based nanoparticles indicating different nucleation mechanisms

    Molecular Diagnosis of Invasive Aspergillosis and Detection of Azole Resistance by a Newly Commercialized PCR Kit

    Get PDF
    Item does not contain fulltextAspergillus fumigatus is the main species responsible for aspergillosis in humans. The diagnosis of aspergillosis remains difficult, and the rapid emergence of azole resistance in A. fumigatus is worrisome. The aim of this study was to validate the new MycoGENIE A. fumigatus real-time PCR kit and to evaluate its performance on clinical samples for the detection of A. fumigatus and its azole resistance. This multiplex assay detects DNA from the A. fumigatus species complex by targeting the multicopy 28S rRNA gene and specific TR34 and L98H mutations in the single-copy-number cyp51A gene of A. fumigatus The specificity of cyp51A mutation detection was assessed by testing DNA samples from 25 wild-type or mutated clinical A. fumigatus isolates. Clinical validation was performed on 88 respiratory samples obtained from 62 patients and on 69 serum samples obtained from 16 patients with proven or probable aspergillosis and 13 patients without aspergillosis. The limit of detection was <1 copy for the Aspergillus 28S rRNA gene and 6 copies for the cyp51A gene harboring the TR34 and L98H alterations. No cross-reactivity was detected with various fungi and bacteria. All isolates harboring the TR34 and L98H mutations were accurately detected by quantitative PCR (qPCR) analysis. With respiratory samples, qPCR results showed a sensitivity and specificity of 92.9% and 90.1%, respectively, while with serum samples, the sensitivity and specificity were 100% and 84.6%, respectively. Our study demonstrated that this new real-time PCR kit enables sensitive and rapid detection of A. fumigatus DNA and azole resistance due to TR34 and L98H mutations in clinical samples

    Evaluation of a new multiplex PCR assay (ParaGENIE G-Amoeba Real-Time PCR kit) targeting Giardia intestinalis, Entamoeba histolytica and Entamoeba dispar/Entamoeba moshkovskii from stool specimens: evidence for the limited performances of microscopy-based approach for amoeba species identification

    No full text
    International audienceObjectivesBesides the potential to identify a wide variety of gastrointestinal parasites, microscopy remains the reference standard in clinical microbiology for amoeba species identification and, especially when coupled with adhesin detection, to discriminate the pathogenic Entamoeba histolytica from its sister but non-pathogenic species Entamoeba dispar/Entamoeba moshkovskii. However, this approach is time-consuming, requires a high-level of expertise that can be jeopardized considering the low prevalence of gastrointestinal parasites in non-endemic countries. Here, we evaluated the CE-IVD-marked multiplex PCR (ParaGENIE G-Amoeba, Ademtech) targeting E. histolytica and E. dispar/E. moshkovskii and Giardia intestinalis.MethodsThis evaluation was performed blindly on a reference panel of 172 clinical stool samples collected prospectively from 12 laboratories and analysed using a standardized protocol relying on microscopy (and adhesin detection by ELISA for the detection of E. histolytica) including G. intestinalis (n = 37), various amoeba species (n = 55) including E. dispar (n = 15), E. histolytica (n = 5), as well as 17 other gastrointestinal parasites (n = 80), and negative samples (n = 37).ResultsThis new multiplex PCR assay offers fast and reliable results with appropriate sensitivity and specificity for the detection of G. intestinalis and E. dispar/E. moshkovskii from stools (89.7%/96.9% and 95%/100%, respectively). Detection rate and specificity were greatly improved by the PCR assay, highlighting several samples misidentified by microscopy, including false-negative and false-positive results for both E. dispar/E. moshkovskii and E. histolytica.ConclusionGiven the clinical relevance of amoeba species identification, microbiologists should be aware of the limitations of using an algorithm relying on microscopy coupled with adhesin detection by ELISA
    corecore