167 research outputs found

    Marital Satisfaction and Conflict: A Cross Cultural Comparison Between China and Australia

    Get PDF
    The levels of marital satisfaction and how these were predicted by scores on the Romantic Partner Conflict Scale were assessed separately in Australian males (n = 48) and females (n = 100) and Chinese males (n = 321) and females (n = 321). Contrary to expectations, marital satisfaction was higher in the Australian sample than in the Chinese sample. However, there was a culture by gender interaction in which Australian females were much more satisfied than Chinese females. Satisfaction scores for males in both cultures were different, with males being less satisfied than females in the Australian sample and the converse in the Chinese sample with males being more satisfied than females. Scores on the Romantic Partner Conflict Scale more strongly predicted marital satisfaction in both Australian males (Radj2 = .43) and females (Radj2 = .21) than in Chinese males (Radj2 = .10) and females (Radj2 = .11). In both of the Australian male and female samples, Compromise in conflict situations was the strongest predictor in a positive direction of marital satisfaction. For females, Interactional Reactivity also entered the equation in a negative direction. For Chinese males, the strongest predictor of satisfaction was Submission (negative direction) followed by Compromise (positive direction). For Chinese females, Separation (negative direction) and Interactional Reactivity (positive direction) entered the prediction equation. These results show that how conflict is dealt with in the relationship is a much strong predictor of marital satisfaction in Australians than in Chinese and that the ability to compromise is important in both Australian sexes. In China, how conflict is dealt with is less important in marital satisfaction and the aspects of conflict handling that predict satisfaction are different to those in Australia and different between the sexes. These results indicate cross-cultural difference in the prediction of marital satisfaction between China and Australia

    Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane

    Get PDF
    A pilot-scale study was performed to assess variations of reverse osmosis (RO) membrane water permeance (A) and salt retention (Robs) induced by chlorination and to compare them with those observed at the lab-scale. A chlorination protocol was adapted to expose only the surface active layer (an aromatic polyamide)of a composite RO membrane to consecutive free chlorine doses ranging from 40 to 4000 ppm h, at pH 6.9. Along the long-term filtration of seawater, performed with a 4" spiral wound RO module, we monitored the variations of A, the decrease of Robs and the rate of increase of A with time, and found themquantitatively similar to those reported in previous studies performed at the lab-scale under accelerated exposure conditions. The elemental analysis of the feed and permeate streams revealed that the rejection of divalent ions remained constant (ca. 100%), irrespective of the free chlorine dose reached, whereas the rejection of monovalent ions of the seawater (mainly sodium, chloride and bromide ions) decreased as the exposure dose increased. Overall, transposing the characterization procedure to the pilot-scale further supports that chlorination of PA, under pH conditions usually found in desalination plants (6.9 to 8.0), is controlled by the concentration of HOCl, as observed from elemental analysis of the surface by XPS

    Additive manufacturing of electrodes for desalination

    Get PDF
    Capacitive deionization (CDI) is an energy-efficient process for desalination of brackish (low-salinity) waters, and will be able to meet the freshwater demands of agriculture, industry, and potable water. One of the key challenges in widespread adoption of CDI is mechanical reliability of the electrodes manufactured by additive manufacturing processes. Mechanical reliability of electrodes depends on the optimal chemical composition of activated carbon-based electrode material. Traditional materials used for CDI electrodes are known to have adverse environmental effects from solvents such as N-Methyl-2-pyrrolidone (NMP) and Dimethyl sulfoxide (DMSO), and fluorine containing binders such as polyvinylidene difluoride (PVDF). In this paper we present (1) electrodes based on 'green chemistry' with reduced environmental impact, (2) stable chemical composition of electrodes with required mechanical reliability. We present the alternative CDI electrode composition using activated carbon, toluene as solvent, and polyvinyl butyral (PVB) as binder. We also mixed ion-exchange resins to produce composite electrode materials with toluene and PVB, which showed similar salt removal characteristics as composite electrodes with PVDF and NMP. Thus, the new electrode composition is a viable alternative for sustainable additive manufacturing of CDI electrodes with mechanical reliability and reduced environmental impact

    A member of the tryptophan-rich protein family is required for efficient sequestration of Plasmodium berghei schizonts

    Get PDF
    Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues

    Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review

    Get PDF
    As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed

    Members of the tryptophan-rich protein family are required for efficient sequestration of P. Berghei schizonts

    No full text
    Ein Kennzeichen der Plasmodium-Infektion ist die Induktion von strukturellen Veränderungen der Membranen der Wirtszelle. Die Parasiten bilden sich Membranstrukturen im Zytoplasma der Wirtszelle aus. Die Maurersche Fleckung ist einer der am besten charakterisierten Struktur von Plasmodium falciparum, die für den Transport von Virulenzfaktoren an die Oberfläche der infizierten Erythrozytenmembran wichtig ist. Plasmodium berghei, eine Nagetier-infizierende Spezies, bildet ähnliche Strukturen aus, die als intra-erythrozytäre P. berghei induzierte Strukturen (IBIS) bezeichnet werden. In beiden Strukturen können Proteine gefunden werden, die für die Sequestrierung von infizierten roten Blutkörperchen innerhalb des Wirts verantwortlich sind. Zwei P. berghei Proteine, IPIS2 und IPIS3, sind im Leber- und Blutstadium der Infektion präsent. Im Blutstadium werden sie in die IBIS-Kompartimente exportiert. Das speziesübergreifende Vorkommen von IPIS2 und IPIS3 deutet darauf hin, dass sie konservierte Funktionen haben könnten, die für das intrazelluläre Wachstum von Plasmodium wichtig sind. Diese Arbeit beschreibt Rollen für beide Proteine an der Wirts-Parasit Schnittstelle während der Infektion. Um einen Einblick in die induzierten Veränderungen zu erhalten, wurde die Infektion von P. berghei in Abwesenheit von IPIS2 beziehungsweise IPIS3 charakterisiert. Darüber hinaus interessierte uns auch, wie sich die Orthologe von IPIS2- und IPIS3 in den Blutstadien von P. knowlesi verhalten. Darüber hinaus zeigt diese Arbeit, dass die Deletion von entweder IPIS2 oder IPIS3 zu leicht reduzierten Wachstumsraten der Parasiten im Blut infizierter Tiere führte und die Anzahl der zirkulierenden Schizonten im peripheren Blut erhöhte, während das Leberstadium unbeeinflusst blieb. Zusammengenommen deuten diese Daten darauf hin, dass IPIS2 und IPIS3 für den Wirtszell-Umbau erforderlich sind, der für die effiziente Sequestrierung von infizierten Erythrozyten aus dem Blutkreislauf verantwortlich ist.One characteristic of Plasmodium infection is the induction of structural changes in the membranes of the host cell. The parasites form membrane structures in the cytoplasm of the host cell. Maurer's clefts are one of the best characterised structures of Plasmodium falciparum, which are important for the transport of virulence factors to the surface of the infected erythrocyte membrane. Plasmodium berghei, a rodent-infecting species, forms similar structures called intra-erythrocyte P. berghei induced structures (IBIS). In both structures, proteins can be found that are responsible for sequestering infected red blood cells within the host. Two P. berghei proteins, IPIS2 and IPIS3, are present in the liver and blood stages of infection. In the blood stage, they are exported to the IBIS compartments. The cross-species presence of IPIS2 and IPIS3 suggests that they may have conserved functions important for Plasmodium intracellular growth. This work describes roles for both proteins at the host-parasite interface during infection. To gain insight into the induced changes, infection of P. berghei was characterized in the absence of IPIS2 and IPIS3, respectively. Furthermore, we were also interested in how the orthologues of IPIS2- and IPIS3 behave in the blood stages of P. knowlesi. Furthermore, this work shows that deletion of either IPIS2 or IPIS3 resulted in slightly reduced parasite growth rates in the blood of infected animals and increased the number of circulating schizonts in the peripheral blood, while the liver stage was unaffected. Taken together, these data suggest that IPIS2 and IPIS3 are required for host cell remodeling, which is responsible for the efficient sequestration of infected erythrocytes from the bloodstream
    corecore