223 research outputs found

    Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy

    Get PDF
    Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.We thank Dibyendu Kumar (Rutgers University) for help with C. glabrata PacBio sequencing. This work was supported by NIH 5R01AI109025 to D.S.P. TG group acknowledges support from the Spanish Ministry of Science and Innovation for grant PGC2018-099921-B-I00, cofounded by European Regional Development Fund (ERDF); from the Catalan Research Agency (AGAUR) SGR423; from the European Union's Horizon 2020 research and innovation programme (ERC-2016-724173); from the Gordon and Betty Moore Foundation (Grant GBMF9742) and from the Instituto de Salud Carlos III (INB Grant PT17/0009/0023 – ISCIII-SGEFI/ERDF).Peer ReviewedPostprint (published version

    Big data and other challenges in the quest for orthologs

    Get PDF
    Given the rapid increase of species with a sequenced genome, the need to identify orthologous genes between them has emerged as a central bioinformatics task. Many different methods exist for orthology detection, which makes it difficult to decide which one to choose for a particular application. Here, we review the latest developments and issues in the orthology field, and summarize the most recent results reported at the third ‘Quest for Orthologs' meeting. We focus on community efforts such as the adoption of reference proteomes, standard file formats and benchmarking. Progress in these areas is good, and they are already beneficial to both orthology consumers and providers. However, a major current issue is that the massive increase in complete proteomes poses computational challenges to many of the ortholog database providers, as most orthology inference algorithms scale at least quadratically with the number of proteomes. The Quest for Orthologs consortium is an open community with a number of working groups that join efforts to enhance various aspects of orthology analysis, such as defining standard formats and datasets, documenting community resources and benchmarking. Availability and implementation: All such materials are available at http://questfororthologs.org. Contact: [email protected] or [email protected]

    A hybrid approach to assess the structural impact of long noncoding RNA mutations uncovers key NEAT1 interactions in colorectal cancer

    Get PDF
    Long noncoding RNAs (lncRNAs) are emerging players in cancer and they entail potential as prognostic biomarkers or therapeutic targets. Earlier studies have identified somatic mutations in lncRNAs that are associated with tumor relapse after therapy, but the underlying mechanisms behind these associations remain unknown. Given the relevance of secondary structure for the function of some lncRNAs, some of these mutations may have a functional impact through structural disturbance. Here, we examined the potential structural and functional impact of a novel A > G point mutation in NEAT1 that has been recurrently observed in tumors of colorectal cancer patients experiencing relapse after treatment. Here, we used the nextPARS structural probing approach to provide first empirical evidence that this mutation alters NEAT1 structure. We further evaluated the potential effects of this structural alteration using computational tools and found that this mutation likely alters the binding propensities of several NEAT1-interacting miRNAs. Differential expression analysis on these miRNA networks shows upregulation of Vimentin, consistent with previous findings. We propose a hybrid pipeline that can be used to explore the potential functional effects of lncRNA somatic mutations.Funding information H2020 European Research Council, Grant/Award Number: 724173Peer ReviewedPostprint (published version

    Big data and other challenges in the quest for orthologs.

    Get PDF
    Given the rapid increase of species with a sequenced genome, the need to identify orthologous genes between them has emerged as a central bioinformatics task. Many different methods exist for orthology detection, which makes it difficult to decide which one to choose for a particular application. Here, we review the latest developments and issues in the orthology field, and summarize the most recent results reported at the third 'Quest for Orthologs' meeting. We focus on community efforts such as the adoption of reference proteomes, standard file formats and benchmarking. Progress in these areas is good, and they are already beneficial to both orthology consumers and providers. However, a major current issue is that the massive increase in complete proteomes poses computational challenges to many of the ortholog database providers, as most orthology inference algorithms scale at least quadratically with the number of proteomes. The Quest for Orthologs consortium is an open community with a number of working groups that join efforts to enhance various aspects of orthology analysis, such as defining standard formats and datasets, documenting community resources and benchmarking. AVAILABILITY AND IMPLEMENTATION: All such materials are available at http://questfororthologs.org. CONTACT: [email protected] or [email protected]

    Transposons played a major role in the diversification between the closely related almond and peach genomes: Results from the almond genome sequence

    Get PDF
    We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short and long‐read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated 238 Mb almond genome size, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27,969 protein‐coding genes and 6,747 non‐coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (P. persica) diverged around 5.88 Mya. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions/kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). TEs have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. TEs may also be at the origin of important phenotypic differences between both species, and in particular, for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.info:eu-repo/semantics/publishedVersio

    Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism.

    Get PDF
    Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 Ma (±120.4 Myr). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used hierarchical orthologous groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO (Gene Ontology) enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, that is, newly acquired. We found 13 gene families in A. winterbourni to have had more than ten genes arising through these recent duplications; all of which have functions potentially relating to host behavioral manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation

    MRI Investigation of the Differential Impact of Left Ventricular Ejection Fraction After Myocardial Infarction in Elderly vs. Nonelderly Patients to Predict Readmission for Heart Failure

    Get PDF
    Acute heart failure; Acute myocardial infarction; ElderlyInsuficiència cardíaca aguda; Infart agut de miocardi; Gent granInsuficiencia cardíaca aguda; Infarto agudo de miocardio; AncianoBackground Patients with ST-segment elevation myocardial infarction (STEMI), especially elderly individuals, have an increased risk of readmission for acute heart failure (AHF). Purpose To study the impact of left ventricular ejection fraction (LVEF) by MRI to predict AHF in elderly (>70 years) and nonelderly patients after STEMI. Study Type Prospective. Population Multicenter registry of 759 reperfused STEMI patients (23.3% elderly). Field Strength/Sequence 1.5-T. Balanced steady-state free precession (cine imaging) and segmented inversion recovery steady-state free precession (late gadolinium enhancement) sequences. Assessment One-week MRI-derived LVEF (%) was quantified. Sequential MRI data were recorded in 579 patients. Patients were categorized according to their MRI-derived LVEF as preserved (p-LVEF, ≥50%), mildly reduced (mr-LVEF, 41%–49%), or reduced (r-LVEF, ≤40%). Median follow-up was 5 [2.33–7.54] years. Statistical Tests Univariable (Student's t, Mann–Whitney U, chi-square, and Fisher's exact tests) and multivariable (Cox proportional hazard regression) comparisons and continuous-time multistate Markov model to analyze transitions between LVEF categories and to AHF. Hazard ratios (HR) with 95% confidence intervals (CIs) were computed. P < 0.05 was considered statistically significant. Results Over the follow-up period, 79 (10.4%) patients presented AHF. MRI-LVEF was the most robust predictor in nonelderly (HR 0.94 [0.91–0.98]) and elderly patients (HR 0.94 [0.91–0.97]). Elderly patients had an increased AHF risk across the LVEF spectrum. An excess of risk (compared to p-LVEF) was noted in patients with r-LVEF both in nonelderly (HR 11.25 [5.67–22.32]) and elderly patients (HR 7.55 [3.29–17.34]). However, the mr-LVEF category was associated with increased AHF risk only in elderly patients (HR 3.66 [1.54–8.68]). Less transitions to higher LVEF states (n = 19, 30.2% vs. n = 98, 53%) and more transitions to AHF state (n = 34, 53.9% vs. n = 45, 24.3%) were observed in elderly than nonelderly patients. Data Conclusion MRI-derived p-LVEF confers a favorable prognosis and r-LVEF identifies individuals at the highest risk of AHF in both elderly and nonelderly patients. Nevertheless, an excess of risk was also found in the mr-LVEF category in the elderly group. Evidence Level 2. Technical Efficacy Stage 2.Grant sponsor: This work was supported by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” (grant numbers PI20/00637, PI15/00531, and CIBERCV16/11/00486, CIBERCV16/11/00420, CIBERCV16/11/00479, and CM21/00175 to V.M.-G.), Fundació La Marató TV3 (grant 20153030-31-32), La Caixa Banking Foundation (HR17-00527) and by Conselleria de Educación – Generalitat Valenciana (PROMETEO/2021/008). J.G. acknowledges financial support from the “Agencia Estatal de Investigación” (grant FJC2020-043981-I/AEI/10.13039/501100011033)

    Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper

    Get PDF
    Orthology assignment is ideally suited for functional inference. However, because predicting orthology is computationally intensive at large scale, and most pipelines are relatively inaccessible (e.g. new assignments only available through database updates), less precise homology-based functional transfer is still the default for (meta-)genome annotation. We therefore developed eggNOG-mapper, a tool for functional annotation of large sets of sequences based on fast orthology assignments using precomputed clusters and phylogenies from the eggNOG database. To validate our method, we benchmarked Gene Ontology predictions against two widely used homology-based approaches: BLAST and InterProScan. Orthology filters applied to BLAST results reduced the rate of false positive assignments by 11%, and increased the ratio of experimentally validated terms recovered over all terms assigned per protein by 15%. Compared to InterProScan, eggNOG-mapper achieved similar proteome coverage and precision while predicting, on average, 41 more terms per protein and increasing the rate of experimentally validated terms recovered over total term assignments per protein by 35%. EggNOG-mapper predictions scored within the top-5 methods in the three Gene Ontology categories using the CAFA2 NK-partial benchmark. Finally, we evaluated eggNOG-mapper for functional annotation of metagenomics data, yielding better performance than interProScan. eggNOG-mapper runs ∼15x faster than BLAST and at least 2.5x faster than InterProScan. The tool is available standalone and as an online service at http://eggnog-mapper.embl.de
    corecore