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Abstract

Long noncoding RNAs (IncRNAs) are emerging players in cancer and they
entail potential as prognostic biomarkers or therapeutic targets. Earlier studies
have identified somatic mutations in IncRNAs that are associated with tumor
relapse after therapy, but the underlying mechanisms behind these associa-
tions remain unknown. Given the relevance of secondary structure for the
function of some IncRNAs, some of these mutations may have a functional
impact through structural disturbance. Here, we examined the potential struc-
tural and functional impact of a novel A > G point mutation in NEAT1 that
has been recurrently observed in tumors of colorectal cancer patients
experiencing relapse after treatment. Here, we used the nextPARS structural
probing approach to provide first empirical evidence that this mutation alters
NEATI structure. We further evaluated the potential effects of this structural
alteration using computational tools and found that this mutation likely alters
the binding propensities of several NEATI-interacting miRNAs. Differential
expression analysis on these miRNA networks shows upregulation of Vimen-
tin, consistent with previous findings. We propose a hybrid pipeline that can
be used to explore the potential functional effects of IncRNA somatic
mutations.

Abbreviations: BLACAT1, BLACAT1 Overlapping LEMD1 Locus; CCAT2, Colon Cancer Associated Transcript 2; CRC, Colorectal cancer; DDXS5,
DEAD-Box Helicase 5; FENDRR, Adjacent Non-Coding Developmental Regulatory RNA; FOXF1, Forkhead Box F1; IncRNAs, Long noncoding
RNAs; LUCAT1, lung cancer associated transcript 1; NEAT1, Nuclear Enriched Abundant Transcript 1; PCAT1, Prostate Cancer Associated
Transcript 1; SNHG7, Small Nucleolar RNA Host Gene 7.
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1 | INTRODUCTION

Colorectal cancer (CRC) is the third most common can-
cer worldwide, with 1.8 million new cases and 880,000
deaths each year."! CRC is a progressive and heteroge-
neous disease. However, two molecular pathways
account for the majority of cases: The chromosomal
instability pathway, which accounts for 70-75% of the
cases and is triggered by the accumulation of mutations
in various oncogenes and tumor suppressor genes, and
the serrated pathway, accounting for the remaining 25-
30% and initiated by specific mutations on the BRAF
oncogene.” Treatment of CRC is based on a combination
of surgery, chemotherapy, and radiotherapy, and its suc-
cess correlates negatively with the level of the advance of
the malignancy at diagnosis, and with other parameters
such as the location of the tumor and the condition of
the patient.”> Tumor relapse after therapy significantly
reduces the survival rates of CRC patients. Relapse affects
30-40% of treated patients and may manifest on local,
regional, and distant tissues.’ > Better predicting the like-
lihood of relapse is important to guide therapy and
improve patient care, and there is a growing interest in
finding new prognostic biomarkers for CRC. In addition,
identifying molecules involved in the onset and progres-
sion of CRC may pave the way for novel, more directed
therapeutic strategies.

Long, noncoding RNAs (IncRNAs) are transcripts lon-
ger than 200 nt that do not encode proteins.® Contrary to
most protein-coding genes, IncRNAs do not exhibit
strong evolutionary conservation,” making it harder to
find homologs and study their functional roles in model
organisms. Synteny could be an alternative to study
IncRNA conservation, particularly the poorly conserved
at the sequence level.® In addition, IncRNAs are generally
expressed at low levels, follow tissue-specific or cell-type
specific expression patterns,” and undergo frequent alter-
native splicing.'® These features hamper their study and
the identification of disease-associated IncRNAs. Accu-
mulating evidence supports an important role of
IncRNAs in CRC," and an important therapeutic, diag-
nostic, or prognostic potential of IncRNAs has been pro-
posed.'? LncRNAs with altered expression in CRC and
with potential roles in the progression of the disease
include AKI123657, BX649059, CCAT2, HOTAIR, and
MALATI, among many others."*”"” However, the roles
and mechanisms of action for most of these IncRNA
remain poorly understood.

LncRNAs can act through diverse molecular mecha-
nisms, often resulting in altered expression of other genes
through their regulation at the epigenetic, transcriptional

and post-transcriptional levels.'”® Therefore, gaining
knowledge of the IncRNA interactome—that is, all bio-
molecules that interact with a given IncRNA—is key for
elucidating the mechanism of action of a IncRNA of
interest. One of the most prominent types of IncRNA-
interacting molecules are microRNAs (miRNAs). Several
studies have shown competitive binding of oncogenic
IncRNAs to tumor suppressor miRNAs in CRC. For
example, IncRNA SNHG7 sponging miR-216b is related
to liver metastasis of CRC." A recent study demonstrated
the suppression of miR-145 maturation through the
IncRNA CCAT?2, a regulatory mechanism that is thought
to be associated with CRC stem cell proliferation and dif-
ferentiation.?’ In addition to miRNAs, IncRNAs can also
interact directly with messenger RNAs (mRNAs).
Through these interactions, IncRNAs may affect mRNA
splicing, editing, and stability, thereby affecting transla-
tion of the encoded protein.”"** It is also possible for
IncRNAs to form triple helices by interacting with
dsDNA.** For example, IncRNA FENDRR binds to the
promoter regions of FOXFI and PITX2 genes, forming a
triple helix and thereby exposing binding sites for the
polycomb repressive complex, which in turn affects target
genes through an epigenetic control mechanism.***
Apart from nucleic acids, IncRNAs are also known to
interact with proteins.”> For instance, the IncRNA
NEATI indirectly activates the Wnt/p-catenin signaling
pathway via binding to DDX5 and promotes CRC
progression.®

As stated previously, IncRNAs generally exhibit low
evolutionary sequence conservation, which prevents the
use of functional annotation approaches relying on
sequence comparisons. This drawback puts an extra
emphasis on IncRNA secondary/tertiary structures,
which are thought to play a significant role in the func-
tion of IncRNAs.?” Indeed, earlier studies have shown
that nucleotide substitutions that are predicted to be
involved in secondary structure formation are subject to
stronger selection constraints.*®

Numerous computational algorithms have been
developed to predict the secondary structures of RNAs,
including, among many others MFold,” RNAfold,*
RNAStructure,”® and RNAShapes.*> However, evalua-
tions on these in silico methods show an average accu-
racy of 38% in secondary structure topology,”” indicating
a significant need of improvement to reach confident
results. This is particularly problematic when trying to
predict the secondary structure of long RNA molecules,
as shown by a recent comparison of computational
methods.>* Recent experimental approaches based on
enzymatic probing followed by sequencing such as
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nextPARS*>* allow to obtain complementary informa-
tion and better determine IncRNA secondary structures.

In this study, we assessed the structural impact of
recurrent IncRNA mutations in CRC tumors identified
in a recent study that used a novel IncRNA enrichment
approach.”” The use of target-enrichment RNA-Seq
enabled detection and genotyping of IncRNAs, despite
their low expression levels. Such approach opens new
avenues for the functional annotation studies of cancer
variants within the noncoding genome, which stands for
the majority of known cancer variants.® In addition,
stage II of CRC represents a crossroads in clinical
decision-making, since the potential use of adjuvant
chemotherapy is decided on this phase.’ That study
identified 379 IncRNAs that were differentially
expressed between tumor and adjacent healthy colonic
tissue derived from stage II CRC patients, and identified
putative somatic mutations detected in tumors but not
in paired healthy tissues. Some of them were recurrently
observed. Here we built up from those results and devel-
oped a hybrid approach to assess the potential structural
and functional impact of such mutations, based on
experimental structural probing using nextPARS and a
set of computational tools. After prioritizing candidate
mutations with low population frequency, and enriched
in tumors with a clinical history of relapse, we selected
a novel NEATI mutation. The experimental structural
characterization of mutant and wild type variants of the
NEAT1 transcript, identified significant structural
changes around the mutated nucleotide that were unde-
tectable by a computational-only approach. Such struc-
tural changes were not observed in control mutations
with high population frequency and hence likely non-
deleterious. Using a set of computational tools, we fur-
ther evaluated the potential effects of this mutation
from a functional point of view. We found that tumors
carrying this mutation showed large transcriptional dif-
ferences with tumors lacking it and found dozens of
genes differentially expressed when the mutation was
present. Using an interactome oriented approach and
stringent analytical criteria, we uncovered potential
miRNA interactions that could be affected in the pres-
ence of this mutation, thereby providing a mechanistic
hypothesis for the association of this mutation with
CRC and relapse.

Altogether, our results provide, to our knowledge, the
first empirical evidence that a IncRNA mutation associ-
ated with tumor relapse has a structural impact. More
generally, we propose a hybrid approach that can serve to
prioritize IncRNAs for further experimental characteriza-
tion, to generate testable hypotheses of IncRNA mecha-
nisms of action and, more generally, to address the low
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functional annotation rate of IncRNAs, which is drasti-
cally outpaced by the discovery of novel signatures.

2 | METHODS

2.1 | Data collection
We used the sequence and clinical data derived from a
IncRNA target-enrichment study in CRC.*’

SNV selection

A total of 5,715 IncRNA mutations found in tumors but
not in paired healthy tissue (i.e., putative somatic) were
reported in table S7 of aforementioned study.’” Using
these data, we selected mutations that were recurrently
occurring on at least three relapse samples. To filter out
potentially wrongly imputed somatic mutations, we
removed mutations with population frequencies higher
than 0.001 on gnomAD 3.1.2.*° As controls, we included
seven other mutations that were reported with high
recurrence in this dataset but failed to pass the allele fre-
quency filtering. These mutations were found in the fol-
lowing IncRNAs; BLACAT1, LUCATI, LINC01811, and
PCATI.

2.2 | nextPARS

We used the nextPARS technique® to experimentally
probe the structure of the following IncRNAs: BLACAT],
NEATI1, LUCATI, LINC01811, and PCATI. We selected a
fragment of 300 nucleotides containing the somatic muta-
tion of interest per each gene, except for BLACATI, for
which two fragments were chosen (BLACAT1_1 of 1,000
bases, and BLACAT1_2 of 300 bases) to cover the three
mutations present in that gene. (Dataset S1).

Two independent nextPARS experiments were run
for this study: (i) IncRNAs fragments without the muta-
tions, and (ii) IncRNAs fragments containing the somatic
mutations of interest. All IncRNA fragments were pro-
duced as described before.*>*! Briefly, PCRs were used to
amplify and linearize the different fragments from each
corresponding plasmid preparation (pUC57 vector with
cloned regions of interest, GenScript Biotech,
Netherlands). Primer sequences, amplicon sizes, muta-
tions, and PCR conditions per each fragment are shown
in Tables S1 and S2, respectively. After confirmation by
Sanger sequencing that the amplified fragments were cor-
rect, all fragments were in vitro transcribed using the T7
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RiboMax Large-scale RNA production system (Promega)
and size-selected and purified using Novex-TBE Urea gels
(Life Technologies). Final purified RNAs were quality
controlled by means of Agilent 2,100 Bioanalyzer with
the RNA 6000 Pico LabChip Kit (Agilent) and the Qubit
Fluorometer with the Qubit RNA BR (Broad-Range)
Assay Kit (ThermoFisher Scientific).

NextPARS was used to probe the secondary structure
of the RNA molecules at 23°C as described before,*® with
a starting material of 2 pg of polyA+ RNA mixed with
20 ng of each IncRNA fragment in each reaction. 0.03 U
of RNase V1 (Ambion) and 200U of S1 nuclease
(Fermentas) were used to digest the corresponding sam-
ples. After confirming the good quality of the final
digested samples, TruSeq Small RNA Sample Preparation
Kit (Illumina) was used to prepare the libraries following
a modified protocol previously described.’® Final libraries
were sequenced in single-reads of 50 nucleotides in Illu-
mina HiSeq2500 sequencers at the Genomics Unit of the
CRG (CRG-CNAG). The computation of the nextPARS
scores was obtained following the protocol described in.*®
The code to obtain the structural profile from nextPARS
experiments is available on Github at https://github.com/
Gabaldonlab/nextPARS_docker. NextPARS scores were
converted to SHAPE-like normalized reactivities using
the nextPARS2SHAPE v1.0 script (https://github.com/
Gabaldonlab/MutiFolds/blob/master/scripts/
nextPARS2SHAPE.py).

2.3 | Interactome analysis

RNAInter v4.0 was used to extract interactome informa-
tion for NEAT1.** Our search query was filtered to show
only results from RNA-RNA, RNA-DNA interactions of
NEAT1I with strong experimental evidence. A list of inter-
action detection methods that were identified as strong
experimental evidence can be seen on the RNAInter web-
site (Wwww.rnainter.org).

IntaRNA 2.0 was used for predicting miRNA-IncRNA
binding sites.*> IntaRNA is a widely used in silico method
for RNA-RNA interaction prediction that incorporates
seed constraints and accessibility of interacting subse-
quences.” Energy scores generated from these predic-
tions are based on the sum of the free energy from
hybridization and the required free energy of site accessi-
bility. Default values were slightly altered following the
assessment done on intaRNA seed and interaction con-
straints by Raden et al.** We ran the algorithm with the
following settings; maximal interaction length of 60, max-
imum loop length of 8, minimum number of base pairs
in seed as 7, and minimal unpaired probability of 0.001.

Our SHAPE-like reactivity scores generated from the
nextPARS experiment were integrated within the target
SHAPE-Input parameters of the tool to increase predic-
tion accuracy. Galaxy Europe server was used for the data
analysis and implementation of the IntaRNA algorithm.*
The remaining RNAs were targeted via LncTar algorithm
to measure whether our candidate mutation was altering
the conditional probability of these interactions.*® LncTar
was selected for method consistency since it also incorpo-
rates free energy minimization to generate results. Long-
Target was used to predict if there is any triplex
formation propensity alteration due to the given NEATI
mutation.*” All triplex formation rules were included
within the command and only TFO1 results were
extracted to provide higher confidence levels. The follow-
ing command was used to generate results:

./LongTarget-f1 DNA.fa-f2 IncRNA.fa-r 0

To assess possible RNA-Protein interactions, we used
ENCODE RNA Binding Proteins track on UCSC Genome
Browser to see if any protein interactions were reported
on the mutation site from RIP-chip, TillingArray or RIP-
seq experiments done by ENCODE researchers.** Bind-
ing propensities of mutant and wild structures were com-
pared using PRIdictor.*

Protein, miRNA, other-RNA, and DNA sequences
were downloaded from NCBI (GRCh38.p14), miRBase
(Release 22.1), Ensembl (Release 105), and NCBI
(GRCh38.p14) respectively.*>* As we are only interested
in the neighboring regions of our candidate mutation, we
only included the same sequences we used for the next-
PARS spike-ins to ensure consistency throughout the
analytical workflow.

Differential expression analysis

We used DESeq2 v1.22.2 for differential gene expression
analysis.>® Briefly, using Salmon we obtained gene-level
abundance estimates and we used tximport v1.10.1 with
txOut = T option to import it in R v3.5.1. We performed
differential expression analysis using the deseq func-
tion.”> We extracted the results after filtering out genes
with an adjusted p-value lower than .01 and log2 fold-
change ranging between —2 and 2. Differentially
expressed transcripts were compared against the candi-
date genes that were generated from LncTar and Long-
Target applications. To assess the effect of miRNA
binding, we searched for gene regulation relations in
CRC from the emiRIT portal and extracted entries that
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included our selected miRNAs after intaRNA execution.’
Interacting genes of these miRNAs were extracted and
compared to our differentially expressed genes.

2.4 | Enrichment analysis
ShinyGO 0.76 was used to analyze the Gene Ontology
(GO) Enrichment in Biological Processes, Cellular Com-
ponents, Molecular Functions, and KEGG pathways.
Minimum pathway size was selected as 2 and a cut-off
value of 0.01 was used for FDR.>

For the Gene Set Enrichment Analysis (GSEA), fsgea
package of Bioconductor was used.’®”’ Following
MSigDB Collections were selected for analysis; Hallmark
gene sets, Curated Gene Sets: Canonical Pathways, and
Oncogenic Gene Sets.”” FDR value of 0.01 was used for
selection constraint.

2.5 | RNA secondary structure
visualization

To obtain the secondary structure of NEATI wild type
(wt) and NEATI mutated (mut) molecules, we use the
RNAfold software (version 2.4.13), using pseudo energy
restraints. Residues for which there was no nextPARS
data were assigned a reactivity of 999, as sug-gested by
the RNAfold manual. The RNA arc diagram was done
using R-chie (version 2.0.8).*°

2.6 | Data availability

The raw sequencing reads produced in this project have
been deposited in the Short Read Archive of the
European Nucleotide Archive under Bioproject ID
PRINA838569. (Reviewer's access https://dataview.ncbi.
nlm.nih.gov/object/PRINA838569?reviewer=qjf34njoud?
jdbah98padqvshf).

3 | RESULTS

3.1 | Selection of candidate mutations
affecting IncRNAs

The RNA-Seq of the aforementioned study included
matched samples taken from tumor and adjacent healthy
tissues from 35 stage II CRC patients, and identified
5,714 IncRNA mutations. We sorted these mutations
based on their prevalence in relapse samples, and
selected the top 5 IncRNAs that harbor the mutations
most prevalent in tumors of relapse patients. We further
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evaluated their allele frequencies in the global human
population reported in gnomAD v3.1.2. Two mutations
passed this filtering step; an A > G point mutation on
chr11:65441347 NEATI1 and a T > C point mutation on
chrX:74277823 of FTX. According to the original study,
NEATI mutation was observed on 11 samples, while the
FTX one was seen on 3. NEATI is also a IncRNA that is
more thoroughly studied with numerous publications
demonstrating its carcinogenic effects. Thereby, we
decided to keep our focus on NEATI mutation on this
study but we think this other recurrent mutation occur-
ring on FTX is also worth studying further, considering
the accumulating evidence of its association with
CRC.SS’SQ

To assess whether the selected recurrent NEATI
mutation had been reported in other cancer patients, we
looked at dbSNP, which includes information from
additional databases besides gnomAD.®® No reports of
this mutation was found. We further checked the exis-
tence of the mutation on the Noncoding Variants data-
set of COSMIC, but we found only one liver cancer
sample harboring this mutation with the id number
CHC2113.°

As controls for the structural analyses, we selected
seven recurrent mutations from four IncRNAs from the
same study that presented a high frequency in gnomAD,
therefore likely representing nondeleterious variants
(Table 1) [Correction added on 7 April 2023, after first
online publication. The sentence citing Table 1 has been
changed from COSMIC to gnomAD.].

Amongst these IncRNAs; BLACAT1, PCATI, and
LUCAT1I have also been previously associated with CRC
progression.®>”** To our knowledge, only LINC01811 has
not been previously associated with CRC from a func-
tional standpoint. However, due to the presence of
LINC01811 mutation on four relapse samples, we also
included this IncRNA in our analysis.

3.2 | Assessing the impact of somatic
mutations in IncRNA structure using
nextPARS

To determine whether our selected mutations can affect
the structure of BLACATI, NEATI, LUCATI, LINC01811,
and PCATI1, we designed RNA probing experiments
using nextPARS that compared wild type and specifically
mutated versions of each transcript (see Materials and
Methods). This allowed us to study changes in the
secondary structure of our candidate IncRNAs at a single-
nucleotide resolution. Each nextPARS experiment was
performed in duplicates which allowed us to validate
the robustness of our experiment, which was high
(Average replicate correlation values for BLACATI_1,
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Location IncRNA Mutation n Relapse gnomAD AF TABLE 1 Recurrent SNPs reported

on the CRC study which we further
chr1:205435419 BLACATI A>G 6 0.689 selected for the nextPARS experiments
chr1:205435109 BLACATI G>A 5 0.651 as controls. Columns indicate, in this
chr1:205435750 BLACATI T>C 4 0.722 order, the location of the mutation, the
chr1:205436836 BLACATI A>G 4 0.764 corresponding IncRNA, base

substitution information, number of
chr5:91313192 LUCATI T>C 3 0.764 relapse samples that carry the
chr3:34394859 LINC01811 A>G 4 0.948 corresponding mutation, and the allele
chr8:127339505 PCATI G>C 4 0.982 frequencies of the mutations based on

gnomAD.

SNP W NEATT (wt)

N

nextPARS (score)
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Fooed

NEAT1 (wt)

FIGURE 1
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Visualization of nextPARS results showing the structural impact of the NEATI mutation on its corresponding base.

(a) Normalized nextPARS scores for wild type (wt) and mutant (mut) molecules of NEAT1. The mutation site A > G chr11:65441347) found
on base 150 indicates a paired structural preference while a strong unpaired structural preference score was obtained for the wt molecule.

The rest of the regions display generally similar structural patterns for both structures. (b) Secondary structure representation of NEAT1
(wt) and NEATI (mut) using nextPARS data as a constraint. (c) RNA arc diagram representing the base-pairing of the two secondary
structure sequences of NEATI (wt) and NEATI (mut) using nextPARS data as a constraint.

BLACATI1_2, NEATI1, LUCATI, LINC01811, and PCATI
were found to be 0.98, 0.97, 0.98, 0.97, 0.98, and 0.98
respectively), even higher than the correlations reported
in the original nextPARS publication.*® A heatmap show-
ing high agreement between replicates can be found in
Figure S1.

We next compared the structural preference profiles
using SHAPE-like normalized reactivities for each

residue (see Materials and Methods, Dataset S2). Our
results indicate that the introduction of the A>G
chr11:65441347 mutation in NEATI generated a different
structural preference, particularly in a region around the
mutated residue (Figure 1), shifting from an unpaired to
a paired state. Gibbs Free Energy difference for this struc-
tural change was found to be —0.9 when the wild type
structure was considered as reference. In contrast, there
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were no structural preference alterations observed for the
other transcripts (Dataset S2). The lack of structural
effects of the mutations in BLACATI, LUCATI,
LINCO01811, and PCAT]1 is consistent with the relatively
high allele frequencies of these mutations in the overall
population. These two observations make it less likely for
these SNPs to drive significant changes in the tumor envi-
ronment. Thereby, we continued our downstream analy-
sis with NEATI to assess the potential functional effects
of this structural alteration. Of note, the detected struc-
tural change in NEATI was not apparent in a
computational-only structural assessment (Figure S2),
reinforcing the need to combine experimental structural
probing when assessing structural impact of mutations.

3.3 | Inferring potential functional
consequences through interactome
analysis

A total of 349 NEATI interacting molecules supported by
strong experimental evidence were retrieved from the
RNAInter Database,*” of which 322 were miRNAs,
14 mRNAs, one IncRNA, and 12 DNAs. To assess
whether these interactions might be affected in the pres-
ence of the studied somatic mutation, we compared the
interactions propensities with the wild type and mutant
versions of NEATI, using a set of computational tools,
specific for each class of interacting molecules. RNAInter
results included multiple molecules for some miRNA tar-
gets, four of the mRNA interactions were corresponding
to HIV-1 and one of the DNA interactions included
PLORZ2H, for which we could not retrieve a sequence. Fil-
tering these cases and removing redundancy resulted in
338 miRNAs, 10mRNAs, 1 IncRNA, and 11 DNAs
(Dataset S3).

We evaluated the effect of the somatic mutation for
338 miRNA-NEAT! interactions with IntaRNA, using
SHAPE-like reactivities from the nextPARS experiment
to strengthen the computational prediction accuracy (see
Materials and Methods). IntaRNA successfully predicted
328 and 330 NEAT1 interacting miRNAs for the wild type
and mutated molecules, respectively (Dataset S4). All of
the interacting miRNA predictions found for NEATI
(wt) molecules overlapped with the NEATI (mut) ones.
Only hsa-miR-219b-5p and hsa-miR-744-3p interactions
were predicted to interact with NEATI (mut), but not
NEATI (wt). The number of predicted binding sites was
compared between the NEATI (wt) and NEATI (mut)
structures to check whether our candidate mutation can
add or remove a binding site from the interaction. An
identical number of binding sites were found for
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302 NEATI-miRNA interactions on both wt and mut
molecules, and a differential effect was predicted for the
remaining 28. These 28 interactions were further assessed
in terms of the effects on the structure of free energy
caused by the presence of the mutation using intaRNA
(Dataset S4).

For the remaining 11 non-miRNA RNA interactions,
we used IncTAR with normalized free energy cut off
value of —0.1 as suggested by the authors.*® LncTAR suc-
cessfully predicted six NEATI interactions for these
11 molecules in the regions surrounding our mutation of
interest (Dataset S4). Importantly, three of these interac-
tions (CD36-NEAT1, SFPQ-NEATI, and LSINCTS5--
NEATTI) resulted in altered free energy values, suggesting
potential disruption of the interaction strength. Of note,
CD36 and SFPQ have been involved in regulation, having
tumor-promoting effects in CRC.*>"%” LSINCT1 was also
reported to be associated with negative prognosis in sev-
eral cancers.*®7°

For the 11 triplex-forming interactions of NEAT1 with
DNA molecules, we used LongTarget (see Material and
Methods) to assess whether our candidate mutation
could affect the binding propensity of triplex-forming oli-
gonucleotides (TFO). To minimize the number of false
negatives, we included the usage of all triplex formation
rules within the algorithm. After generating the TFO
sorted results, we extracted only class 1 (TFO1) predic-
tions to increase confidence and compared the number of
predicted TFO1 sites between the wild type and mutant
structures. LongTarget successfully predicted TFO1 sites
for all of these molecules. Out of these 11 predictions,
four included identical amounts of TFO1 sites, while
seven resulted in predicted alterations (Table 2): FOLHI,
MAPK15, RNF40, RPS24, SAP18, SP3, ZSCANZ22
(Dataset S4).

To assess possible protein interactions occurring on
the mutated region, we used ENCODE RNA Binding Pro-
tein Tracks and observed that an ELAVL1 (NP_001410.2)
binding was reported.* We used PRIdictor with default
settings to predict differential binding sites.*’ No differen-
tial binding sites were predicted for the wild and mutant
sequences.

3.4 | Transcriptional effects of NEAT1
somatic mutation

To evaluate whether the presence of the somatic muta-
tion of interest had a measurable transcriptomic effect,
we performed differential expression analyses using the
data provided in the original publication.’” We compared
differences between tumor samples carrying the NEAT1
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FIGURE 2 PCA plots generated using RNA-Seq data of tumors carrying NEAT1 (wt) or NEAT1 (mut) alleles.
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somatic mutation of interest and those without the alter-
ation. Our results (Figure 2) suggest a strong transcrip-
tional effect of the NEAT1 mutation, with most
mutation-carrying tumors clustering together.

To investigate the transcriptional signature of the four
clustered NEAT1 (mut) samples we performed a differen-
tial expression analysis by comparing their expression
levels with the eight NEAT1(wt) tumors (see Materials
and Methods). We identified 322 differentially expressed
genes (Dataset S5). We performed functional enrichment
analysis (see Materials and Methods, Figure 3), and found
that genes upregulated in NEAT1 (mut) tumors are
enriched in the following Gene Ontology (GO) Biological
Process pathways: Sequestering of zinc ion, Autocrine sig-
naling, Leukocyte aggregation, Protein nitrosylation, Pepti-
dyl—cysteine S — nitrosylation, Leukocyte migration
involved in inflammatory response, Astrocyte develop-
ment and Astrocyte differentiation. Upregulated genes
were also seen to be enriched in the following GO Molecu-
lar Functions; Toll—like receptor 4 binding, Arachidonic
acid binding, Icosanoid binding, Icosatetraenoic acid bind-
ing, RAGE receptor binding, Long—chain fatty acid bind-
ing, and Fatty acid binding. No significant GO enrichment
was found for downregulated genes.

We next compared differentially expressed genes
against the candidate interacting genes derived from the
previous analyses. To determine the candidate genes for
miRNA interactions, we used emiRIT>* and extracted
1829 entries found within CRC gene regulation. These
entries were compared against our 28 miRNAs that were
predicted to have altered IncRNA binding and the inter-
acting genes from the intersecting ones were selected for
differential expression analysis. Candidate genes derived
from other RNA and DNA interactions are selected from
IncTar and LongTarget results respectively. There was
only one gene common within both sets: Vimentin
(VIM), which is upregulated by 2.11 log fold change with
a p adjusted value of .002. We think this finding is valu-
able because upregulation of VIM has been reported to
be an indicator of poor prognosis in CRC.”"””* VIM was
found to be interacting with miR-200c’* and miR-378,”
which are both parts of the NEAT1 interactome. Our
intaRNA predictions generated an extra binding site on
the NEAT1 (mut) structure for miR-200a-5p and miR-
378a-5p. However, intaRNA also generated a conflicting
result for miR-378e, where an extra binding site was pre-
dicted for NEAT1 (wt) instead.

4 | DISCUSSION

Over the last decade, many IncRNAs have been discov-
ered, and the evidence supporting their role in human
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diseases, including cancer, has been growing. Today,
IncRNAs are seen as potential biomarkers and therapeu-
tic targets in cancer.”® Although their aberrant expression
levels in cancers suggest a possible role in the disease,
only a limited number of IncRNAs have been well char-
acterized from a functional standpoint. Low evolutionary
conservation and a complex interactome are two defining
features of IncRNAs, which hamper their functional
annotation. This study aimed to target these two factors
via a hybrid approach to determine potential structural
implications of IncRNA somatic mutations and their pos-
sible consequences for molecular interactions. Our
approach aims to minimize false discovery rates by look-
ing for multiple evidence levels and using stringent
constraints.

Single nucleotide polymorphisms (SNP) and somatic
mutations are known to affect the structure and expres-
sion levels of IncRNAs.”” For this reason, identifying
driver mutations on IncRNAs is crucial and pipelines
such as ExInAtor began to emerge to address this issue’®
. Nevertheless, IncRNAs mostly fulfill their function
through interacting with other molecules, and these
interactions can be highly dependent on the IncRNA sec-
ondary structures.”>’® Subtle changes in these interac-
tions could lead to important outcomes. For these
reasons, IncRNAs are sometimes mentioned as fine-
tuners of gene regulation.*”®' Here, we predict the poten-
tial effects of IncRNA somatic mutations associated with
CRC relapse. In particular, we wanted to test the hypoth-
esis that these somatic mutations were acting through
alterations of the secondary structures of their corre-
sponding IncRNAs.

A novel mutation along with seven control variants
with high allele frequencies recurrently observed on CRC
samples were tested for structural effects using the next-
PARS experimental approach. Mutations found in BLA-
CATI1, LUCATI, LINCO01811, and PCATI carried high
allele frequencies in the population and we did not
observe any structural alteration. Considering both the
high allele frequencies shown for these mutations on
gnomAD and our nextPARS results, we conclude these
variants represent non-deleterious polymorphisms and
likely result from errors in the detection of somatic muta-
tions. For NEATI, however, our results showed that a
novel A > G mutation (not previously reported in gno-
mAD), occurring on chrl1:65441347, affects the struc-
tural preference from an unpaired to a paired state.
Importantly, this effect was not detected when comparing
the secondary structure information using only in-silico
computational predictions, which underscores the utility
of experimental probing approaches such as nextPARS.

NEATI has been previously shown to be associated
with CRC through several mechanisms of action. NEATI
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is responsible for indirect activation of the Wnt/p-catenin
signaling pathway via binding to DDX5 and KDM5A/
Cul4A/Wnt axis.’*® In addition, NEATI regulates sev-
eral tumorigenesis-associated pathways via sponging
multiple miRNAs.** Studies show that NEATI is overex-
pressed in CRC -especially in metastatic cases- and high
expression of this IncRNA is associated with poor progno-
sis.***> We studied the 322 NEATI-miRNA, 14 NEATI-
mRNA, 1 NEATI-IncRNA, and 12 NEATI-DNA interac-
tions reported in the RNAInter database and based on
strong experimental evidence as well as a protein interac-
tion with ELAVL1 that is seen on ENCODE RNA Bind-
ing Proteins tracks. Our computational workflow (see
Figure S3), described in the methods section, predicted
that the somatic mutation results in binding propensity
alterations for 28 miRNA, 5 mRNA, 1 RNA, and 7 DNA
interactions. Consisting with these interactions having a
regulatory effect, a re-analysis of available RNAseq data
showed large differences in the transcriptional profiles of
tumors carrying that NEAT1 somatic mutation as com-
pared to those lacking it. We assessed genes that were dif-
ferentially expressed in tumors depending on the NEAT1
mutation, and crossed these data with potential targets of
miRNAs whose interactions with NEAT1 was predicted
to be altered. This procedure solely identified the
Vimentin-coding gene VIM, which was upregulated in
tumors with NEAT1 mutation and which interacts with
NEATI-interacting miRNAs miR-200c’* and miR-378.”
Vimentin is an epithelial-mesenchymal transition (EMT)
marker which is aberrantly expressed in CRC and corre-
lated with poor prognosis.*®*® A recent study found that
knockdown of ZFASI IncRNA was associated with better
prognosis in CRC and reduced Vimentin levels.®
Authors showed that ZFASI regulates epithelial-
mesenchymal transition in CRC through reciprocal inter-
action with the miR-200 family. Our intaRNA runs pre-
dict an extra binding site on NEAT1/miR-200a-5p for the
mutated molecule. To our knowledge, there is no pub-
lished work assessing the potential existence of NEAT1/
miR-200/VIM axis in CRC. Two other altered binding
sites were found for vimentin interacting miRNAs. One
extra binding site for miR-378a-5p and one fewer binding
site for miR-378 e were predicted for NEAT1 (mut). These
conflicting results made it harder for us to interpret the
effect of the mutation for NEAT1/miR-378 family interac-
tions. Nevertheless, miR-378 has been previously demon-
strated to have a tumor suppressive role in CRC and the
knockdown of miR-378 has been associated with
increased vimentin levels.”” Similar expression patterns
were also found on transgenic mice for the specific
knockdown of miR-378-5p.*” In addition, knockdown
experiments on CRC cell lines indicate a strong coexpres-
sion pattern between NEATI and VIM expressions.®*

Finally, we observe an enrichment of the Toll-like
Receptor 4 (TLR4) binding for the upregulated genes on
NEATI (mut) samples (see Figure 3b). Increased TLR4
expression was previously observed in CRC patients as
well as in cell lines.*® Doan et al suggested that TLR4 reg-
ulates inflammation-mediated CRC prognosis by playing
a role in the activation of PI3K/Akt pathway.*® Links
between TLR4 activation and CRC prognosis have also
been supported through additional mechanisms that are
associated with carcinogenesis such as increased Cox-2
expression and EGFR signaling.”® As a summary TLR4
has a well-documented physiological role in CRC progno-
sis, making it a potential therapeutic target.

The upregulated genes that were involved in TLR4
Binding (G0:0035662) were S100A9 and S100A8. NEAT1
has been shown to regulate SIO0A9 expression through
miR-196a-5p sponging in rosacea.”’ Our intaRNA runs
did not predict an alteration on the number of binding
sites for miR-196a-5p between NEATI (wt) and NEATI
(mut) molecules. We also checked the other possible
miRNA interactions for SI00A9 but none was reported
on RNAInter under strong experimental evidence con-
straint. Nevertheless, SI00A9 itself is considered a strong
diagnostic biomarker for CRC®* and we think that the
3.94 fold upregulation observed on NEAT1 (mut) samples
is an interesting finding which may indicate the existence
of novel regulatory mechanisms between NEATI and
S100A9.

We did not predict any altered binding for ELAVLI,
which is a protein that was previously demonstrated to
bind the NEAT1 region where our mutation occurs. How-
ever, several articles associate ELAVL] association with
CRC”®* and considering that many IncRNAs perform
their functions through protein interactions” we think
this interaction is also worth examining further.

In summary, we suspected that IncRNA mutations
found to be enriched in CRC tumors from patients
experiencing relapse and that showed low allelic frequen-
cies in the overall population could lead to clinically rele-
vant functional outcomes. We hypothesized that such
mutations may trigger structural alterations on the RNA
molecule to affect its interaction network. To our knowl-
edge, our study represents the first empirical demonstra-
tion that a tumor-associated somatic mutation enriched
in CRC samples with relapse after surgery induces a
structural change on its corresponding IncRNA, which
suggests that structural alterations may mediate func-
tional changes and pathogenic impact. Downstream com-
putational analysis on this novel NEATI mutation
revealed the potential effects of this alteration through
multiple mechanisms. Although we implemented conser-
vative selection constraints on every level of our analyti-
cal workflow, we acknowledge that our findings should
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be experimentally validated. Our primary goal in this
study was to demonstrate the strength of using a secondary
structure-oriented approach on IncRNA somatic mutations
on characterizing IncRNA behavior. We also underline the
immense potential of structure-altering mutations on the
fine-tuning role of IncRNAs through their complex interac-
tome relationships. Altogether, we propose that our hybrid
approach could be used to prioritize disease-associated
IncRNAs and their mutations, and to generate testable
hypotheses on possible mechanisms of action.
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