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ABSTRACT

Given the rapid increase of species with a sequenced genome, the

need to identify orthologous genes between them has emerged as a

central bioinformatics task. Many different methods exist for orthology

detection, which makes it difficult to decide which one to choose for a

particular application.

Here, we review the latest developments and issues in the orthology

field, and summarize the most recent results reported at the third

‘Quest for Orthologs’ meeting. We focus on community efforts such

as the adoption of reference proteomes, standard file formats and

benchmarking. Progress in these areas is good, and they are already

beneficial to both orthology consumers and providers. However, a

major current issue is that the massive increase in complete prote-

omes poses computational challenges to many of the ortholog data-

base providers, as most orthology inference algorithms scale at least

quadratically with the number of proteomes.

The Quest for Orthologs consortium is an open community with a

number of working groups that join efforts to enhance various aspects

of orthology analysis, such as defining standard formats and datasets,

documenting community resources and benchmarking.

Availability and implementation: All such materials are available at

http://questfororthologs.org.
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1 INTRODUCTION

Orthologs are defined as genes in different species that descend by
speciation from the same gene in the last common ancestor (Fitch,

1970). Because of this, they are likely to perform equivalent func-
tions, and even if they have diverged since the speciation event,

they are more likely to be functional counterparts in different spe-

cies than other types of homologs (Gabald �on and Koonin, 2013).

The probable functional equivalence of orthologs has made them

attractive for genome annotation, and a range of approaches have

been developed to identify orthologs, which has resulted in a

number of repositories for precomputed orthology relationships.

In fact, there are currently at least 37 different ortholog databases

(reviewed inAltenhoff andDessimoz, 2012). Besides their import-

ance for genome annotation and functional inference, finding

orthologs is a necessary step to build species phylogenies and to

perform comparative genomics analyses (e.g. anchoring chromo-

some alignments, reconstructing ancestral proteomes).

An unfortunate effect of the wide interest in orthology is that

many different formats and datasets exist, and it is far from

trivial to integrate or compare orthologs from different sources.

As a forum to discuss orthology analysis, standards and ways to

coordinate and compare ortholog inferences, the orthology com-

munity started a workshop series called ‘Quest for Orthologs’

which held its third event in July 2013 in Lausanne,

Switzerland. We here review the latest developments and

trends in the orthology field, including unpublished results

presented at the latest workshop.
The rapidly increasing number of genomes sequenced creates

acute computational challenges. As we discuss below, because

most orthology prediction methods have at least quadratic

scaling with the number of included species (e.g. owing to all-

against-all sequence comparison), computation times have

become a bottleneck. Computing orthologs between all complete

proteomes has recently gone from typically a matter of CPU-

weeks to hundreds of CPU-years, and new, faster algorithms and

methods are called for.
Other areas we discuss that have received attention recently

include ‘domain orthology’, i.e. orthology analysis at the protein

domain level, and xenology, or horizontal gene transfer (HGT),

which in some cases may instead be the result of contaminating

sequences in poorly curated genomes.
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Finally, we provide an update on areas of central importance

to the orthology community, in particular, (i) standards

for data analysis and data sharing, and (ii) the ‘orthology con-

jecture’, i.e. the testing of the hypothesis that orthologs are more

functionally similar than paralogs. Even though this hypothesis

has been considered true both from first principles and data, it

has been debated (Studer and Robinson-Rechavi, 2009), and was

recently challenged with counter evidence. However, a number of

subsequent studies identified problems with that analysis and

showed that when correcting for biases, the same type of analysis

does provide support for the ortholog conjecture.

2 BIG DATA CHALLENGES IN ORTHOLOGY
ANALYSIS

Thanks to revolutionary developments in DNA sequencing tech-

nologies, there are already many thousands of species with a

sequenced genome, with the total number roughly doubling

each year. In fact, the reduction in sequencing costs in the past

years has overtaken the rate at which the computing capacity of

processors increases, known as Moore’s law. An inevitable result

of this trend is that the increase in computational demands in

sequence analyses is not easily met by an increase in computa-

tional capacities but rather calls for new approaches or algorith-

mic implementations. Given that the number of pairwise

relationships increases quadratically with the total number

of species, the inference of orthology relationships across an

ever-growing sequence space is severely affected. Such a compu-

tational challenge affects all methodological approaches for

orthology inference, but impacts most dramatically those that

include steps that scale poorly with the number of sequences

considered, such as phylogenetic analysis. As a result, it is chal-

lenging to be comprehensive in terms of establishing orthology

and paralogy relationships across all sequenced genomes. Some

databases address such problems by implementing methodo-

logical shortcuts. For instance, the latest version of TreeFam

(Schreiber et al., 2013) builds gene families based on profile-

based searches that avoids all-against-all comparisons employed

in graph-based approaches, while Hieranoid uses a species tree-

guided approach to scale linearly (Schreiber and Sonnhammer,

2013). Sharing computations across databases also seems a pro-

mising avenue. In this direction, OMA (Altenhoff et al., 2011)

and OrthoDB (Waterhouse et al., 2013) have joined forces to

compute all-against-all sequence comparisons only once for the

two databases, an initiative that could be extended to other data-

bases in the future. Similarly, MetaPhOrs (Pryszcz et al., 2011)

exploits gene phylogenies precomputed by other databases to

infer consistency-based orthologs. The last version of EggNOG

(Powell et al., 2014) reuses all-against-all comparisons from the

Similarity Matrix of Protein project (SIMAP; Arnold et al.,

2014). Interestingly, SIMAP itself has drawn on user-volunteered

computing for nearly 10 years, using the BOINC (Berkeley Open

Infrastructure for Network Computing) infrastructure (Rattei

et al., 2007); they, however, have recently announced plans to

move back to fully ‘in-house’ computations, which casts doubts

on the effectiveness of user-volunteered computing. Finally,

some databases have opted for a focused approach by limiting

their analyses to predetermined sets of species; this is the case for

phylome-based or collection-based inferred orthologs in
PhylomeDB (Huerta-Cepas et al., 2014) and PANTHER (Mi
et al., 2013). Other problems related to big data challenges

relate to the need to deploy large databases on servers that in-
clude fast and efficient search and displaying tools. Thus, the
limit of traditional systems such as SQL-based relational data-

bases is being reached in many cases, calling for the need for
alternative solutions. Fortunately, many of the mentioned Big
Data challenges are shared by other fields, also outside the re-

search environment, and thus, a growing number of alternative
solutions for some of the problems are or will be available. This
will require building the necessary expertize to adapt such solu-

tions to the specific needs of orthology databases, and to keep up
with the fast developments in the Big Data field.
Independently of the mentioned computational challenges, the

growing availability of sequenced genomes poses additional chal-
lenges related to the increased resolution of the data at hand.

While orthology is defined at the level of comparisons across
species, the increasing availability of sequences from populations
of the same species and from closely related species creates scen-

arios that are difficult to interpret under the canonical speci-
ation/duplication model. This is the case, for instance, of the
incomplete lineage sorting of gene alleles during speciation,

which actually started diverging before the speciation event,
but also of scenarios resulting from hybridization, introgression
or other types of genetic exchanges. Problems appearing after the

availability of genomes from populations or highly related spe-
cies include not only methodological problems (e.g. resolving
recent duplications and speciations when only few differing

sites are present), but also operational ones (e.g. should orthol-
ogy be considered between genomes of the same species?; should

only a reference strain or reference species be used?). These prob-
lems notwithstanding, the availability of genomes from closely
related species also provides some opportunities for improving

orthology prediction such as the possibility to consider pangen-
omes or use synteny information (i.e. chromosomal position
conservation).

3 HIERARCHICAL GROUPS

In the past few years, the concept of hierarchical orthologous

groups has gained increased attention. Hierarchical orthologous
groups are defined with respect to specific species clades and—

barring inference errors—contain all the sequences that have
evolved from a single ancestral gene in the last common ancestor
of that clade (Jothi et al., 2006; Kriventseva et al., 2008; Merkeev

et al., 2006; Powell et al., 2014; reviewed in Boeckmann et al.,
2011). Hierarchical orthologous groups generalize the concept of
orthology to more than two species at a time. Consider, for

instance, the Thyroid hormone receptor family, which underwent
a duplication at the base of the vertebrates, yielding the two
genes TR-� and TR-� (e.g. Wu et al., 2007). At the level of

vertebrate species, TR-� and TR-� belong to distinct hierarchical
orthologous groups, whereas at the broader level of bilaterian
species, they belong to the same group. Thus, depending on the

context of investigation, the user can choose the level of granu-
larity in a precisely defined and evolution-aware way.
Hierarchical orthologous groups were a recurrent theme of the

latest Quest for Orthologs meeting. Evgeny Zdobnov (University
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of Geneva, Switzerland) presented updates in the pipeline and
user interface of the OrthoDB database (Waterhouse et al.,
2013). Adrian Altenhoff (ETH Zurich, Switzerland) introduced

a new method to compute hierarchical orthologous groups from
pairs of orthologous genes (Altenhoff et al., 2013), available in
the OMA database and the OMA stand-alone software (http://

omabrowser.org/standalone). Erik Sonnhammer (Stockholm
University, Sweden) presented Hieranoid, an algorithm to
build hierarchical orthologous groups using InParanoid

(Schreiber and Sonnhammer, 2013). Hierarchical orthologous
groups can be described in the OrthoXML format (Schmitt

et al., 2011) discussed in Section 5.

4 ORTHOLOGY BENCHMARKING

Benchmarking continues to be a major theme for the orthology

community. In the second Quest for Orthologs meeting in 2011,
a working group had been formed with the goal of establishing
standards in orthology benchmarking and facilitating bench-

marking. Christophe Dessimoz (University College London,
UK) presented its progress. The main achievements of the work-
ing group are (i) the development of a freely available Web server

for orthology benchmarking and (ii) a comparison of eight
orthology databases on a common set of 66 species (2011
Quest for Orthologs reference proteome dataset) on a battery

of 10 phylogenetic and functional tests. Results for each test
can be retrieved from the benchmarking Web server (http://

orthology.benchmarkservice.org/). The Web server and the
benchmark results will be presented and discussed in detail in a
separate publication.

5 DATA FORMAT STANDARDS

Since the first Quest for Orthologs meeting in 2009, many ortho-
log databases have joined the community effort to support

common data format standards. There are many advantages of
using a shared format, particularly for ‘ortholog consumers’ that
want to import orthology information from many different

providers. Also for constructing meta-databases and for com-
parative analyses, it is beneficial to avoid the need to write a
separate parser for each data source.

The orthology community is gradually progressing from only
providing their own format (usually a text file) to adopting the
OrthoXML standard (Schmitt et al., 2011). At the moment,

seven databases (Ensembl Compara, InParanoid, MBGD,
OMA, OrthoLuge, PhylomeDB and RoundUp) are supporting

OrthoXML, and MetaPhOrs and PANTHER will support it
with their next releases (See http://orthoxml.org for an updated
list and Web links to the databases). The PhyloXML format can

be used to store orthology information in trees, but is less general
because it cannot define orthologous relationships for which a
tree is not specified.

Although XML offers structured data and excellent consist-
ency verification, it is not by itself or automatically translatable
to a powerful database engine in the same way that SQL

is. In recent years, Semantic Web standards like RDF
(Resource Description Framework; http://www.w3.org/RDF)
and SPARQL (SPARQL Protocol and RDF Query Language;

http://www.w3.org/TR/rdf-sparql-query/) have attracted the

attention of the bioinformatics community and, for example,
UniProt (Jain et al., 2009) and EBI (Jupp et al., 2014) have
data accessible using such standards. RDF provides a flexible

graph-based data model that facilitates the integration of data-
sets by making explicit the links between the graphs of each
dataset, and permits identifying any such resource in the

Internet through URIs (Uniform Resource Identifiers).
SPARQL permits distributed queries across RDF databases
scattered around the world, which facilitates the reuse of data

while reducing the maintenance effort. It also offers easy com-
bination of different datatypes, and avoids proliferation of over-
lapping XML schemas.

At the Quest for Orthologs meeting in 2013, some of these
benefits were practically demonstrated through the RDF
versions of Roundup, OGO and MBGD (see http://questfor

orthologs.org/orthology_databases for Web links). The success
of semantic data sharing is generally improved by the use of

shared ontologies. However, the aforementioned RDF databases
used different application-oriented ontologies, so our community
is working on defining the set of properties and classes to be used

in an RDF representation of orthology. For this purpose, ontol-
ogies like the Homology Ontology (Roux and Robinson-
Rechavi, 2010) and the Comparative Data Analysis Ontology

(Prosdocimi et al., 2009) will have to be studied and reused.
Having orthology information available according to such ontol-
ogies would also open the door for the Quest for Orthologs

consortium to exploit automated reasoning, e.g. consistency of
datasets, inference based on logical properties like symmetry or
transitivity, etc. The performance of RDF is likely worse than for

relational databases, and it is still unclear how well RDF would
work in practice for large-scale orthology applications.

6 REFERENCE DATASETS

The Quest for Orthologs consortium has defined a consensus

dataset of proteomes and common file formats (Dessimoz
et al., 2012; Gabald�on et al., 2009) to be used by diverse orthol-
ogy inference methods, allowing for standardized benchmarks

and to aid integration of multiple ortholog sources. The Quest
for Orthologs Reference Proteomes datasets were created as a
collection of data providing a representative protein for each

gene in the genome of selected species. Such datasets have been
generated annually from the UniProt Knowledgebase

(UniProKB) database (The UniProt Consortium, 2012) for the
past four years. To this end, a gene-centric pipeline has been
developed and enhanced over these years at UniProt. The

Quest for Orthologs Reference Proteomes are a manually com-
piled subset of the UniProt reference proteomes, comprising
well-annotated model organisms and organisms of interest for

biomedical research and phylogeny, with the intention to provide
broad coverage of the tree of life.
Currently, the reference dataset provided to the Quest for

Orthologs consortium comprises 66 species (40 Eukaryotes plus
26 Bacteria/Archea) that are based on the UniProtKB 2014_04
release of April 16, 2014. In total, this represents 969 707 protein

sequences and 449 433243 residues. They are all complete non-
redundant reference proteome sets for the species chosen and are
publicly available at http://www.ebi.ac.uk/reference_proteomes.

The data are provided either as SeqXML (Schmitt et al., 2011) or
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as flat files composed of non-redundant FASTA files for ‘canon-

ical’ and ‘additional’ sequence datasets, where ‘additional’

involves isoforms and/or variants of the canonical protein se-

quence for a given gene, including haplotypes, readthrough,

pseudogenes, etc. Importantly, the last version of the reference

proteomes includes the coding sequences (CDS DNA) for each

protein. Finally, a gene-to-protein mapping file and an ‘id

mapping’ file containing different database identifiers for those

proteins are provided. One of the efforts that was initiated in the

last Quest for Orthologs meeting was the construction of a ref-

erence species tree for these reference proteomes. For this, a

working group has been created that is surveying the literature to

establish a most supported topology for these species with infor-

mation on what nodes may be less supported (http://swisstree.

vital-it.ch/species_tree). Such a reference tree will serve to ration-

alize choices of subsets of the reference proteomes, as well as to

expand ongoing efforts on benchmarking orthology prediction

methods.

7 THE ORTHOLOG CONJECTURE STILL HOLDS

In 2011, the orthology field was baffled by a publication claiming

that orthologs are less functionally conserved than paralogs

(Nehrt et al., 2011). This would contradict one of the main mo-

tivations of the Quest for Orthologs, and came as a surprise

because five recent papers (reviewed in Dessimoz et al., 2012;

Gabald �on and Koonin, 2013) had provided different lines of

support for the ortholog conjecture. If anything, the paper by

Nehrt et al. showed that one has to be extremely careful when

using Gene Ontology (GO) annotations between species and

when comparing gene expression data. It was followed up by

reports on how they had used GO incorrectly (Thomas et al.,

2012) and showing that when controlling for confounders, the

ortholog conjecture actually holds (Altenhoff et al., 2012).

Furthermore, using microarrays and RNA-seq gene expression

datasets, Chen and Zhang (2012); Huerta-Cepas et al. (2011) and

Rogozin et al. (2014) showed that orthologs are more conserved

in expression pattern than paralogs. Marc Robinson-Rechavi

(University of Lausanne, Switzerland) presented further evidence

that functional divergence between human and mouse orthologs

is primarily owing to expression patterns and not to positive

selection on protein sequences. In conclusion, analyzing func-

tional conservation between species is challenging, and many

pitfalls exist that can lead to unexpected and incorrect results.
Orthology by itself is an evolutionary concept and does not

imply identical function. Conversely, non-homologous sequences

may perform the same function, a situation referred to as ana-

logy. This is well known, and an old criticism of the orthology

concept is that it does not take divergence into account. For

instance, it is likely that a mammal-specific paralogous gene

pair is more similar in sequence and function than a human–

Escherichia coli ortholog pair. It would therefore be useful to

quantitatively estimate how functionally similar two genes are

given their evolutionary relationship. At the Lausanne meeting,

Jean-Franc¸ois Dufayard (CIRAD, Montpellier, France) pre-

sented a functional conservation score to this end, based on

events and distances between two genes measured along a gene

tree. The score needs to be empirically calibrated, which turned

out to be difficult, but it is a promising approach to predict the
level of functional conservation.

8 DOMAIN ORTHOLOGY

Most existing ortholog databases contain orthology assignments
as a property of the entire protein, i.e. they consider the whole

protein as a single object. However, many proteins consist of
multiple domains, and domain architectures are known to
evolve over time by deletion, duplication or insertion of individ-
ual domains (Buljan and Bateman, 2009). Wu et al. (2012)

reported that within the Drosophila clade, domain rearrange-
ments occur in 35.9% of the gene families. Domains on the
same protein chain may be orthologous to different genes (illu-

strated in Fig. 1). It is certainly true that orthologs can have
different domain architectures. (Forslund et al., 2011) found
that between some species, 10% of the orthologs differ in

domain architecture. Likewise, Lucy Mengqi Li (Imperial
College, London, UK) reported at the Quest for Orthologs meet-
ing that, based on analyses of OMA and Pfam, up to 50% may

differ.
Other studies have analyzed independent creation of domain

architectures, i.e. that the same domain architecture has been
reinvented multiple times by domain rearrangements (Forslund

et al., 2007; Zmasek and Godzik, 2011). Such domain architec-
ture reinvention implies that individual domains in an architec-
ture can have different evolutionary histories, and therefore are

unlikely to be orthologous to the same genes.
Thus, as others have noted (Sj€olander et al., 2011), it would

make sense to apply a domain-aware approach for orthology

inference. This is the case for the databases PHOG (Datta
et al., 2009) and MBGD (Uchiyama, 2006; Uchiyama et al.,

Fig. 1. Evolutionary scenario that would give rise to inconsistent orthol-

ogy relationships for different domains in a protein. The hypothetical red

and blue domains are evolving by descent along the species tree of the

species X, M and H, giving rise to extant proteins X1, M1, H1, H2, M2

and X2. After a duplication of protein H2 in species H, this blue domain

was inserted into red-domain protein H1, such that protein H1 now has

two domains. Therefore, H1’s red domain is orthologous to M1 and X1,

whereas its blue domain is orthologous to M2 and X2
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2012), which both consider domain architecture when making

orthology assignments. Ikuo Uchiyama (National Institute for

Basic Biology, Aichi, Japan) presented a new algorithm for re-

finement of domain boundaries using multiple alignments for the

MBGD pipeline at the Quest for Orthologs meeting.
Still, many improvements can be envisaged. There is no cur-

rent resource that displays both domain architecture graphics

and domain-wise orthology assignments (Storm et al., 2003).

The ability to distinguish between orthology supported by all

domains and orthology supported by a subset of the domains

only would be helpful to improve the quality of ortholog assign-

ments and refine function inference across orthologs.

Furthermore, domain orthology may in some cases reveal orthol-

ogy relationships missed by full-length analyses, for instance,

owing to highly divergent parts of the genes. Lucy Mengqi Li

also described how domain-aware orthology inference could be

used to elucidate mechanisms of architectural changes. One must

keep in mind, however, that adding the domain level to orthol-

ogy analysis further adds to the computational burden, and

probably compromises between coverage and level of refinement

have to be made.

9 HOMOLOGY RELATIONSHIPS ARISING FROM
NON-VERTICAL INHERITANCE

Orthology analyses generally assume that the genetic material is

propagated by vertical descent from preexisting genes either by

speciation (resulting in orthologs) or duplication (resulting in

paralogs). This encapsulation is however known to often be vio-

lated in prokaryotes that frequently exchange DNA with each

other, a mechanism termed HGT. Although to a lesser extent,

HGT is also detected in microbial groups of eukaryotes, particu-

larly in fungi (Keeling and Palmer, 2008; Marcet-Houben and

Gabald�on, 2009). To describe the homology relationship

between genes related by a non-vertical transfer event, the term

xenolog was introduced (Gray and Fitch, 1983). It is often diffi-

cult to assess whether a gene has been horizontally transferred or

has evolved in an unusual way. This is especially true in analyses

performed at large scales and using automated procedures.

At the same time, a recent comparative study has shown that

current orthology inference methods perform poorly in the pres-

ence of HGT (Dalquen et al., 2013). Paul Thomas (University of

Southern California, Los Angeles, USA) presented a new

method to reconcile trees allowing for duplication and HGT,

by comparing two alternative hypotheses at each step during

phylogenetic tree building. When two genes are inferred to be

neighbors in the tree but are from very distant species, one

hypothesis is that they were both vertically inherited from their

common ancestor but were lost in the intermediate species; the

alternative hypothesis is that there was a horizontal transfer and

no deletions. With an increasing number of implied deletions in

the vertical descent scenario, the relative likelihood of the hori-

zontal transfer scenario becomes greater. Choosing a threshold

of 15 implied deletions within a set of 82 organisms in

PANTHER version 8 (Mi et al., 2013), Paul Thomas identified

�2000 potential horizontal transfer events in 800 gene families

from the PANTHER database (�10% of all families in the

database). Many of these cases are known evolutionary events,

such as the acquisition of proteobacterial genes in the eukaryotic
common ancestor (presumably from mitochondrial endo-
symbiosis), and that of cyanobacterial genes in the plant

common ancestor (presumably from plastid endosymbiosis).
Interestingly, however, some genomes have an excess of such
cases that are not likely to reflect true evolutionary events.

Examples include five apparent horizontal transfer events from
a Plasmodium-like organism to platypus, and �40 apparent
events from an alpha-proteobacterial organism to tick. This is

more consistent with DNA sample contamination (Rickettsia is
an alpha-proteobacterial symbiont of the tick gut) than actual
inter-genome transfer. It thus seems worthwhile to annotate

likely horizontally transferred genes, which for eukaryotes may
well be contaminations that can be corrected in revised genome
releases. Another approach was taken by Vincent Daubin (Lyon

University, France), who used probabilistic modeling to simul-
taneously reconstruct the species tree and the gene trees, as well
as all the implied gene duplication, loss and transfer events

(Boussau et al., 2012). Last but not least, it is important to
note that other natural processes, distinct from HGT, can
cause gene tree topologies that are incongruent with the under-

lying species tree. These include, among others, the incomplete
sorting of alleles across lineages during rapid speciation events
and the recombination of paralogous genes (gene conversion).

10 OUTLOOK

The Quest for Orthologs community effort is progressing in
many areas of shared interest to research groups in the field,

both for method developers and consumers of orthologs. Yet
many challenges remain, particularly in dealing with data

growth and in extending the basic concept of orthology to hier-
archical groups, to multi-domain proteins and to lateral gene
transfer. Likewise, work still needs to be done to achieve the

consortium’s vision of full interoperability among orthology
resources and comprehensive and fair resource benchmarking.
To tackle these challenges, a roadmap has been laid out and 13

working groups have been created (see http://questfororthologs.
org). The next meeting will take place in Barcelona in 2015.
We invite all interested parties to join us in the QfO.
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