15 research outputs found

    Laser-induced bound-state phases in high-order harmonic generation

    Full text link
    We present single-molecule and macroscopic calculations showing that laser-induced Stark shifts contribute significantly to the phase of high-order harmonics from polar molecules. This is important for orbital tomography, where phases of field-free dipole matrix elements are needed in order to reconstruct molecular orbitals. We derive an analytical expression that allows the first-order Stark phase to be subtracted from experimental measurements

    Two-center minima in harmonic spectra from aligned polar molecules

    Full text link
    We extend a model of two-center interference to include the superposition of opposite orientations in aligned polar molecules. We show that the position of the minimum in the harmonic spectrum from both aligned and oriented CO depends strongly on the relative recombination strength at different atoms, not just the relative phase. We reinterpret the minimum in aligned CO as an interference between opposite orientations, and obtain good agreement with numerical calculations. Inclusion of the first-order Stark effect shifts the position of the interference minimum in aligned CO even though aligned molecules do not posses total permanent dipoles. We explain the shift in terms of an extra phase that the continuum electron of oriented CO accumulates due to the Stark effect

    Vold i massemedierne En socialkonstruktivistisk analyse af massemediernes voldsfremstillinger

    No full text
    -

    Attosecond transient absorption spectroscopy of molecular nitrogen: Vibrational coherences in the b′ 1Σ+u state

    No full text
    Nuclear and electronic dynamics in a wavepacket comprising bound Rydberg and valence electronic states of nitrogen from 12 to 15 eV are investigated using attosecond transient absorption. Vibrational quantum beats with a fundamental period of 50 femtoseconds persist for a picosecond in the b′ 1Σ+u valence state. Multi-state calculations show that these coherences result primarily from near infrared-induced coupling between the inner and outer regions of the b′ 1Σ+u state potential and the dark a″ 1Σ+g state. The excellent spectral and temporal resolution of this technique allows measurement of the anharmonicity of the b′ 1Σ+u potential directly from the observed quantum beats
    corecore