90 research outputs found

    S100A4 (S100 calcium binding protein A4)

    Get PDF
    Review on S100A4 (S100 calcium binding protein A4), with data on DNA, on the protein encoded, and where the gene is implicated

    S100A4 (S100 Calcium Binding Protein A4)

    Get PDF
    Review on S100A4, with data on DNA/RNA, on the protein encoded and where the gene is implicated

    Neural Analyses Validate and Emphasise the Role of Progesterone Receptor in Breast Cancer Progression and Prognosis

    Get PDF
    Oestrogen receptor (ER) expression is routinely measured in breast cancer management, but the clinical merits of measuring progesterone receptor (PR) expression have remained controversial. Hence the major objective here was to assess the potential of PR as a predictor of response to endocrine therapy. We report analyses of the relative importance of ER and PR for predicting prognosis using robust multilayer perceptron artificial neural networks. Receptor determinations use immunohistochemical (IHC) methods or radioactive ligand binding assays (LBA). In view of the heterogeneity of intratumoral receptor distribution, we examined the relative merits of the IHC and LBA methods. Our analyses reveal a more significant correlation of IHC-determined PR than ER with both nodal status and 5-year disease-free survival (DFS). In LBA, PR displayed higher correlation with survival and ER with nodal status. There was concordance of correlation of PR with DFS by both IHC and LBA. This study suggests a clear distinction between PR and ER, with PR displaying greater correlation than ER with disease progression and prognosis, and emphasises the marked superiority of the IHC method over LBA. These findings may be valuable in the management of patients with breast cancer

    Overexpression of S100A4 in human cancer cell lines resistant to methotrexate

    Get PDF
    Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance. Methods: The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively. Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA against S100A4. Transfection of an expression vector encoding for β-catenin was used to inquire for the possible transcriptional regulation of S100A4 through the Wnt pathway. Results: S100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a chemosensitization in combined treatments with MTX. β-catenin overexpression experiments support a possible involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells. Conclusions: S100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both approaches highlight a role for S100A4 in MTX resistanc

    Psoriasin (S100A7) expression is altered during skin tumorigenesis

    Get PDF
    BACKGROUND: Psoriasin (S100A7) expression has previously been associated with psoriasiform hyperplasia as well as with tumor progression in breast cancer. Its expression profile for different stages of skin lesions is unknown. The aim of this study was to determine the relationship between psoriasin (S100A7) and tumor progression in skin. METHODS: Psoriasin was assessed by immunohistochemistry and levels of expression determined by semi-quantitative scoring in skin biopsies from 50 patients. The cohort included normal skin, actinic keratosis, squamous carcinoma in-situ, invasive squamous cell carcinoma, and basal cell carcinoma. RESULTS: In normal skin, psoriasin was rarely detected in epidermis but was expressed in underlying adnexae. In abnormal epidermis psoriasin was frequently expressed in abnormal keratinocytes in actinic keratosis, in-situ and invasive squamous cell carcinoma, but was rarely observed in the basal epidermal layer or in superficial or invasive basal cell carcinoma. The highest levels of expression were seen within squamous carcinoma in-situ. Significantly reduced levels of expression were observed in both unmatched (p = 0.0001) and matched (p < 0.004) invasive squamous cell carcinoma. Psoriasin expression within abnormal squamous lesions correlated with mitotic count (r = 0.54, p = 0.0036), however no significant relation was found with the intensity of dermal inflammatory cell infiltrates assessed within each pathology. CONCLUSION: These results suggest that altered psoriasin expression occurs in abnormal epidermis and that downregulation may be related to the onset of invasion in squamous cell carcinoma in skin

    ESR1 and EGF genetic variation in relation to breast cancer risk and survival

    Get PDF
    The main purposes of this thesis were to analyse common genetic variation in candidate genes and candidate pathways in relation to breast cancer risk, prognosticators and survival, to develop statistical methods for genetic association analysis for evaluating the joint importance of genes, and to investigate the potential impact of adding genetic information to clinical risk factors for projecting individualised risk of developing breast cancer over specific time periods. In Paper I we studied genetic variation in the estrogen receptor α and epidermal growth factor genes in relation to breast cancer risk and survival. We located a region in the estrogen receptor α gene which showed a moderate signal for association with breast cancer risk but were unable to link common variation in the epidermal growth factor gene with breast cancer aetiology or prognosis. In Paper II we investigated whether suspected breast cancer risk SNPs within genes involved in androgen-to-estrogen conversion are associated with breast cancer prognosticators grade, lymph node status and tumour size. The strongest association was observed for a marker within the CYP19A1 gene with histological grade. We also found evidence that a second marker from the same gene is associated with histological grade and tumour size. In Paper III we developed a novel test of association which incorporates multivariate measures of categorical and continuous heterogeneity. In this work we described both a single-SNP and a global multi-SNP test and used simulated data to demonstrate the power of the tests when genetic effects differ across disease subtypes. In Paper IV we assessed the extent to which recently associated genetic risk variants improve breast cancer risk-assessment models. We investigated empirically the performance of eighteen breast cancer risk SNPs together with mammographic density and clinical risk factors in predicting absolute risk of breast cancer. We also examined the usefulness of various prediction models considered at a population level for a variety of individualised breast cancer screening approaches. The goal of a genetic association study is to establish statistical associations between genetic variants and disease states. Each variant linked to a disease can lead the way to a better understanding of the underlying biological mechanisms that govern the development of a disease. Increased knowledge of molecular variation provides the opportunity to stratify populations according to genetic makeup, which in turn has the potential to lead to improved disease prevention programs and improved patient care

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel

    Statins: A conceivable remedial role for the regulation of cancer progression

    No full text
    corecore