6 research outputs found

    Assessing in vivo and in vitro biofilm development by Streptococcus dysgalactiae subsp. dysgalactiae using a murine model of catheter-associated biofilm and human keratinocyte cell

    Get PDF
    001 from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This work is also financed by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P., of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HBandStreptococcus dysgalactiae subsp. dysgalactiae (SDSD) is an important agent of bovine mastitis. This infection causes an inflammatory reaction in udder tissue, being the most important disease-causing significant impact on the dairy industry. Therefore, it leads to an increase in dairy farming to meet commercial demands. As a result, there is a major impact on both the dairy industry and the environment including global warming. Recurrent mastitis is often attributed to the development of bacterial biofilms, which promote survival of sessile cells in hostile environments, and resistance to the immune system defense and antimicrobial therapy. Recently, we described the in vitro biofilm development on abiotic surfaces by bovine SDSD. In that work we integrated microbiology, imaging, and computational methods to evaluate the biofilm production capability of SDSD isolates on abiotic surfaces. Additionally, we reported that bovine SDSD can adhere and internalize human cells, including human epidermal keratinocyte (HEK) cells. We showed that the adherence and internalization rates of bovine SDSD isolates in HEK cells are higher than those of a SDSD DB49998-05 isolated from humans. In vivo, bovine SDSD can cause invasive infections leading to zebrafish morbidity and mortality. In the present work, we investigated for the first time the capability of bovine SDSD to develop biofilm in vivo using a murine animal model and ex-vivo on human HEK cells. Bovine SDSD isolates were selected based on their ability to form weak, moderate, or strong biofilms on glass surfaces. Our results showed that SDSD isolates displayed an increased ability to form biofilms on the surface of catheters implanted in mice when compared to in vitro biofilm formation on abiotic surface. A greater ability to form biofilm in vitro after animal passage was observed for the VSD45 isolate, but not for the other isolates tested. Besides that, in vitro scanning electron microscopy demonstrated that SDSD biofilm development was visible after 4 hours of SDSD adhesion to HEK cells. Cell viability tests showed an important reduction in the number of HEK cells after the formation of SDSD biofilms. In this study, the expression of genes encoding BrpA-like (biofilm regulatory protein), FbpA (fibronectin-binding protein A), HtrA (serine protease), and SagA (streptolysin S precursor) was higher for biofilm grown in vivo than in vitro, suggesting a potential role for these virulence determinants in the biofilm-development, host colonization, and SDSD infections. Taken together, these results demonstrate that SDSD can develop biofilms in vivo and on the surface of HEK cells causing important cellular damages. As SDSD infections are considered zoonotic diseases, our data contribute to a better understanding of the role of biofilm accumulation during SDSD colonization and pathogenesis not only in bovine mastitis, but they also shed some lights on the mechanisms of prosthesis-associated infection and cellulitis caused by SDSD in humans, as well.publishersversionpublishe

    Investigação molecular de espécies de micoplasmas hemotrópicos em cães, equinos e humanos de um assentamento rural do sul do Brasil

    Get PDF
    Os objetivos deste estudo foram determinar a prevalência de hemoplasmas numa população restrita de cães, equinos e humanos altamente expostos a picadas de carrapatos em assentamento rural brasileiro; identificar as espécies de carrapatos parasitando cães e equinos, e analisar os fatores associados à infecção. Amostras de sangue de 132 cães, 16 cavalos e 100 humanos foram avaliadas utilizando um protocolo pan-hemoplasma em PCR quantitativas em tempo real (qPCR) com SYBR green, seguido de qPCR TaqMan espécie-específicos. Cinquenta e nove/132 (44,7%) cães foram positivos para hemoplasmas (21 Mycoplasma haemocanis, 12 ' Candidatus Mycoplasmahaematoparvum' e 21 para ambos). Uma amostra humana do total de 100 (1%) foi positiva pelo qPCR SYBR green, mas os genes 16S rRNA ou 23S rRNA não foram amplificados com sucesso, apesar de inúmeras tentativas. Todas as amostras de cavalos foram negativas. Cães >; 1 ano apresentaram mais chance de serem positivos para hemoplasmas ( p= 0,0014). Concluindo, embora infecções por hemoplasmas caninos sejam altamente prevalentes, a transmissão de hemoplasmas entre espécies não foi observada, e desta forma podem não ocorrer de forma frequente apesar da alta exposição aos agentes e vetores.The aims of this study were to determine the prevalence of hemoplasmas in a rural Brazilian settlement's population of human beings, their dogs and horses, highly exposed to tick bites; to identify the tick species parasitizing dogs and horses, and analyze factors associated with their infection. Blood samples from 132 dogs, 16 horses and 100 humans were screened using a pan-hemoplasma SYBR green real-time PCR assay followed by a species-specific TaqMan real-time PCR. A total of 59/132 (44.7%) dog samples were positive for hemoplasmas (21 Mycoplasma haemocanisalone, 12 ' CandidatusMycoplasma haematoparvum' alone and 21 both). Only 1/100 (1.0%) human sample was positive by qPCR SYBR green, with no successful amplification of 16S rRNA or 23 rRNA genes despite multiple attempts. All horse samples were negative. Dogs >;1 year of age were more likely to be positive for hemoplasmas ( p= 0.0014). In conclusion, although canine hemoplasma infection was highly prevalent, cross-species hemoplasma transmission was not observed, and therefore may not frequently occur despite overexposure of agents and vectors

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    MOLECULAR INVESTIGATION OF HEMOTROPIC MYCOPLASMAS IN HUMAN BEINGS, DOGS AND HORSES IN A RURAL SETTLEMENT IN SOUTHERN BRAZIL

    Get PDF
    SUMMARYThe aims of this study were to determine the prevalence of hemoplasmas in a rural Brazilian settlement's population of human beings, their dogs and horses, highly exposed to tick bites; to identify the tick species parasitizing dogs and horses, and analyze factors associated with their infection. Blood samples from 132 dogs, 16 horses and 100 humans were screened using a pan-hemoplasma SYBR green real-time PCR assay followed by a species-specific TaqMan real-time PCR. A total of 59/132 (44.7%) dog samples were positive for hemoplasmas (21 Mycoplasma haemocanisalone, 12 ' CandidatusMycoplasma haematoparvum' alone and 21 both). Only 1/100 (1.0%) human sample was positive by qPCR SYBR green, with no successful amplification of 16S rRNA or 23 rRNA genes despite multiple attempts. All horse samples were negative. Dogs >1 year of age were more likely to be positive for hemoplasmas ( p= 0.0014). In conclusion, although canine hemoplasma infection was highly prevalent, cross-species hemoplasma transmission was not observed, and therefore may not frequently occur despite overexposure of agents and vectors
    corecore