412 research outputs found

    Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies

    Full text link
    We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. We pre-process CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time dependent phenomena. The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient to understand the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae sub-types is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be feasible in the near future (Abridged).Comment: 20 pages, 13 figures, accepted for publication in A&

    Uncovering hidden modes in RR Lyrae stars

    Full text link
    The Kepler space telescope revealed new, unexpected phenomena in RR Lyrae stars: period doubling and the possible presence of additional modes. Identifying these modes is complicated because they blend in the rich features of the Fourier-spectrum. Our hydrodynamic calculations uncovered that a 'hidden' mode, the 9th overtone is involved in the period doubling phenomenon. The period of the overtone changes by up to 10 per cent compared to the linear value, indicating a very significant nonlinear period shift caused by its resonance with the fundamental mode. The observations also revealed weak peaks that may correspond to the first or second overtones. These additional modes are often coupled with period doubling. We investigated the possibilities and occurrences of mutual resonances between the fundamental mode and multiple overtones in our models. These theoretical findings can help interpreting the origin and nature of the 'hidden' modes may be found in the high quality light curves of space observatories.Comment: In proceedings of "20th Stellar Pulsation Conference Series: Impact of new instrumentation & new insights in stellar pulsations", 5-9 September 2011, Granada, Spai

    CoRoT light curves of RR Lyrae stars. CoRoT 101128793: long-term changes in the Blazhko effect and excitation of additional modes

    Full text link
    The CoRoT (Convection, Rotation and planetary Transits) space mission provides a valuable opportunity to monitor stars with uninterrupted time sampling for up to 150 days at a time. The study of RR Lyrae stars, performed in the framework of the Additional Programmes belonging to the exoplanetary field, will particularly benefit from such dense, long-duration monitoring. The Blazhko effect in RR Lyrae stars is a long-standing, unsolved problem of stellar astrophysics. We used the CoRoT data of the new RR Lyrae variable CoRoT 101128793 (f0=2.119 c/d, P=0.4719296 d) to provide us with more detailed observational facts to understand the physical process behind the phenomenon. The CoRoT data were corrected for one jump and the long-term drift. We applied different period-finding techniques to the corrected timeseries to investigate amplitude and phase modulation. We detected 79 frequencies in the light curve of CoRoT 101128793. They have been identified as the main frequency f0, and its harmonics, two independent terms, the terms related to the Blazhko frequency, and several combination terms. A Blazhko frequency fB=0.056 c/d and a triplet structure around the fundamental radial mode and harmonics were detected, as well as a long-term variability of the Blazhko modulation. Indeed, the amplitude of the main oscillation is decreasing along the CoRoT survey. The Blazhko modulation is one of the smallest observed in RR Lyrae stars. Moreover, the additional modes f1=3.630 and f2=3.159 c/d are detected. Taking its ratio with the fundamental radial mode into account, the term f1 could be the identified as the second radial overtone. Detecting of these modes in horizontal branch stars is a new result obtained by CoRoT.Comment: 13 pages, 2 figures, 2 long tables. Accepted for publication in A&

    Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria

    Get PDF
    This study outlines the results of current and future climate scenarios, and potentially realizable climate adaptation measures, for the city of Klagenfurt, Austria. For this purpose, we used the microscale urban climate model (MUKLIMO_3), in conjunction with the cuboid method, to calculate climate indices such as the average number of summer and hot days per year. For the baseline simulation, we used meteorological measurements from 1981 to 2010 from the weather station located at Klagenfurt Airport. Individual building structures and canopy cover from several land monitoring services were used to derive accurate properties for land use classes in the study domain. To characterize the effectiveness of climate adaptation strategies, we compared changes in the climate indices for several (future) climate adaptation scenarios to the reference simulation. Specifically, we considered two major adaptation pathways: (i) an increase in the albedo values of sealed areas (i.e., roofs, walls and streets) and (ii) an increase in green surfaces (i.e., lawns on streets and at roof level) and high vegetated areas (i.e., trees). The results indicate that some climate adaptation measures show higher potential in mitigating hot days than others, varying between reductions of 2.3 to 11.0%. An overall combination of adaptation measures leads to a maximum reduction of up to 44.0%, indicating a clear potential for reduction/mitigation of urban heat loads. Furthermore, the results for the future scenarios reveal the possibility to remain at the current level of urban heat load during the daytime over the next three decades for the overall combination of measures

    Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling

    Get PDF
    We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5 yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f2 has an amplitude of a few mmag, 20–45 times lower than the main radial mode with frequency f1. The two oscillations have a period ratio of P2/P1 = 0.612–0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is non-radial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P2/P1 ∼ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f2 at ∼1/2f2 and at ∼3/2f2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f2 and its subharmonics are variable on a time-scale of 10–200 d. The dominant radial mode also shows variations on the same time-scale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1 mmag, that must correspond to non-radial g-modes. Such modes never before have been observed in RR Lyrae variables
    corecore