782 research outputs found

    Quasiparticle scattering time in superconducting films: from dirty to clean limit

    Full text link
    We study the quasiparticle energy relaxation processes in superconducting Nb films of different thicknesses corresponding to different electron mean free paths in a state far from equilibrium, that is the highly dissipative flux-flow state driven up to the instability point. From the measured current-voltage curves we derive the vortex critical velocity vv^{*} for several temperatures. From the v(T)v^{*}(T) values, the quasiparticle energy relaxation time τϵ\tau_{\epsilon} is evaluated within the Larkin-Ovchinnikov model and numerical calculations of the quasiparticle energy relaxation rates are carried out to support the experimental findings. Besides the expected constant behavior of τϵ(T)\tau_{\epsilon}(T) for the dirty samples, we observe a strong temperature dependence of the quasiparticle energy relaxation time in the clean samples. This feature is associated with the increasing contribution from the electron-phonon scattering process as the dirty limit is approached from the clean regime

    A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy

    Get PDF
    © 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR

    Superconductivity in Fullerides

    Full text link
    Experimental studies of superconductivity properties of fullerides are briefly reviewed. Theoretical calculations of the electron-phonon coupling, in particular for the intramolecular phonons, are discussed extensively. The calculations are compared with coupling constants deduced from a number of different experimental techniques. It is discussed why the A_3 C_60 are not Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates of the Coulomb pseudopotential μ\mu^*, describing the effect of the Coulomb repulsion on the superconductivity, as well as possible electronic mechanisms for the superconductivity are reviewed. The calculation of various properties within the Migdal-Eliashberg theory and attempts to go beyond this theory are described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to Review of Modern Physics, more information at http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm

    Evaluation of rK39 rapid diagnostic tests for canine visceral leishmaniasis : longitudinal study and meta-analysis

    Get PDF
    Canine visceral leishmaniasis is a vector-borne disease caused by the intracellular parasite Leishmania infantum. It is an important veterinary disease, and dogs are also the main animal reservoir for human infection. The disease is widespread in the Mediterranean area, and parts of Asia and South and Central America, and is potentially fatal in both dogs and humans unless treated. Diagnosis of canine infections requires serological or molecular tests. Detection of infection in dogs is important prior to treatment, and in epidemiological studies and control programmes, and a sensitive and specific rapid diagnostic test would be very useful. Rapid diagnostic tests (RDTs) have been developed, but their diagnostic performance has been reported to be variable. We evaluated the sensitivity of a RDT based on serological detection of the rK39 antigen in a cohort of naturally infected Brazilian dogs. The sensitivity of the test to detect infection was relatively low, but increased with time since infection and the severity of infection. We then carried out a meta-analysis of published studies of rK39 RDTs, evaluating the sensitivity to detect disease and infection. The results suggest that rK39 RDTs may be useful in a veterinary clinical setting, but the sensitivity to detect infection is too low for operational control programmes

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Cell populations in lesions of cutaneous leishmaniasis of leishmania (L.) amazonensis- infected rhesus macaques, Macaca mulatta

    Full text link
    The cellular nature of the infiltrate in cutaneous lesion of rhesus monkeys experimentally infected with Leishmania (L.) amazonensis was characterized by immunohistochemistry. Skin biopsies from infected animals with active or healing lesions were compared to non-infected controls (three of each type) to quantitate inflammatory cell types. Inflammatory cells (composed of a mixture of T lymphocyte subpopulations, macrophages and a small number of natural killer cells and granulocytes) were more numerous in active lesions than in healing ones. T-cells accounted for 44.7 ± 13.1% of the infiltrate in active lesions (versus CD2+= 40.3 ± 5.7% in healing lesions) and T-cell ratios favor CD8+ cells in both lesion types. The percentage of cells expressing class II antigen (HLA-DR+) in active lesions (95 ± 7.1%) was significantly higher (P < 0.005) from the healing lesions (42.7 ± 12.7%). Moreover, the expression of the activation molecules CD25 (@ 16%), the receptor for interleukin-2, suggests that many T cells are primed and proliferating in active lesions. Distinct histopathological patterns were observed in lesions at biopsy, but healing lesions contained more organized epithelioid granulomas and activated macrophages, followed by fibrotic substitution. The progression and resolution of skin lesions appears to be very similar to that observed in humans, confirming the potential for this to be used as a viable model to study the immune response in human cutaneous leishmaniasis

    Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention

    Get PDF
    Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets
    corecore