726 research outputs found

    Black hole evolution by spectral methods

    Get PDF
    Current methods of evolving a spacetime containing one or more black holes are plagued by instabilities that prohibit long-term evolution. Some of these instabilities may be due to the numerical method used, traditionally finite differencing. In this paper, we explore the use of a pseudospectral collocation (PSC) method for the evolution of a spherically symmetric black hole spacetime in one dimension using a hyperbolic formulation of Einstein's equations. We demonstrate that our PSC method is able to evolve a spherically symmetric black hole spacetime forever without enforcing constraints, even if we add dynamics via a Klein-Gordon scalar field. We find that, in contrast to finite-differencing methods, black hole excision is a trivial operation using PSC applied to a hyperbolic formulation of Einstein's equations. We discuss the extension of this method to three spatial dimensions.Comment: 20 pages, 17 figures, submitted to PR

    Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis.

    Get PDF
    BACKGROUND: We studied the incidence, prevalence, and radiographic progression of symptomatic adjacent-segment disease, which we defined as the development of new radiculopathy or myelopathy referable to a motion segment adjacent to the site of a previous anterior arthrodesis of the cervical spine. METHODS: A consecutive series of 374 patients who had a total of 409 anterior cervical arthrodeses for the treatment of cervical spondylosis with radiculopathy or myelopathy, or both, were followed for a maximum of twenty-one years after the operation. The annual incidence of symptomatic adjacent-segment disease was defined as the percentage of patients who had been disease-free at the start of a given year of follow-up in whom new disease developed during that year. The prevalence was defined as the percentage of all patients in whom symptomatic adjacent-segment disease developed within a given period of follow-up. The natural history of the disease was predicted with use of a Kaplan-Meier survivorship analysis. The hypothesis that new disease at an adjacent level is more likely to develop following a multilevel arthrodesis than it is following a single-level arthrodesis was tested with logistic regression. RESULTS: Symptomatic adjacent-segment disease occurred at a relatively constant incidence of 2.9 percent per year (range, 0.0 to 4.8 percent per year) during the ten years after the operation. Survivorship analysis predicted that 25.6 percent of the patients (95 percent confidence interval, 20 to 32 percent) who had an anterior cervical arthrodesis would have new disease at an adjacent level within ten years after the operation. There were highly significant differences among the motion segments with regard to the likelihood of symptomatic adjacent-segment disease (p CONCLUSIONS: Symptomatic adjacent-segment disease may affect more than one-fourth of all patients within ten years after an anterior cervical arthrodesis. A single-level arthrodesis involving the fifth or sixth cervical vertebra and preexisting radiographic evidence of degeneration at adjacent levels appear to be the greatest risk factors for new disease. Therefore, we believe that all degenerated segments causing radiculopathy or myelopathy should be included in an anterior cervical arthrodesis. Although our findings suggest that symptomatic adjacent-segment disease is the result of progressive spondylosis, patients should be informed of the substantial possibility that new disease will develop at an adjacent level over the long term

    Integrating value of research into NCI Clinical Trials Cooperative Group research review and prioritization: A pilot study

    Full text link
    BackgroundThe Institute of Medicine has called for approaches to help maximize the return on investments (ROI) in cancer clinical trials. Value of Research (VOR) is a health economics technique that estimates ROI and can inform research prioritization. Our objective was to evaluate the impact of using VOR analyses on the clinical trial proposal review process within the SWOG cancer clinical trials consortium.MethodsWe used a previously developed minimal modeling approach to calculate VOR estimates for 9 phase II/III SWOG proposals between February 2015 and December 2016. Estimates were presented to executive committee (EC) members (N = 12) who determine which studies are sent to the National Cancer Institute for funding consideration. EC members scored proposals from 1 (best) to 5 based on scientific merit and potential impact before and after receiving VOR estimates. EC members were surveyed to assess research priorities, proposal evaluation process satisfaction, and the VOR process.ResultsValue of Research estimates ranged from −2.1Bto2.1B to 16.46B per proposal. Following review of VOR results, the EC changed their score for eight of nine proposals. Proposal rankings were different in pre‐ vs postscores (P value: 0.03). Respondents had mixed views of the ultimate utility of VOR for their decisions with most supporting (42%) or neutral (41%) to the idea of adding VOR to the evaluation process.ConclusionsThe findings from this pilot study indicate use of VOR analyses may be a useful adjunct to inform proposal reviews within NCI Cooperative Clinical Trials groups.The Instiztute of Medicine has called for approaches to help maximize the return on investments in cancer clinical trials. The findings from this pilot study indicate use of value of research analyses may be a useful adjunct to inform proposal reviews within NCI Cooperative Clinical Trials groups.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146484/1/cam41657.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146484/2/cam41657_am.pd

    Effective field theory and the quark model

    Get PDF
    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the ``nonrelativistic'' constituent QM for baryon masses and moments is completely equivalent through O(m_s) to a parametrization of the relativistic field theory in a general spin--flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections.Comment: 25 pages, revtex, no figure

    New evidence on Allyn Young's style and influence as a teacher

    Get PDF
    This paper publishes the hitherto unpublished correspondence between Allyn Abbott Young's biographer Charles Blitch and 17 of Young's former students or associates. Together with related biographical and archival material, the paper shows the way in which this adds to our knowledge of Young's considerable influence as a teacher upon some of the twentieth century's greatest economists. The correspondents are as follows: James W Angell, Colin Clark, Arthur H Cole, Lauchlin Currie, Melvin G de Chazeau, Eleanor Lansing Dulles, Howard S Ellis, Frank W Fetter, Earl J Hamilton, Seymour S Harris, Richard S Howey, Nicholas Kaldor, Melvin M Knight, Bertil Ohlin, Geoffrey Shepherd, Overton H Taylor, and Gilbert Walker

    Monte Carlo study of the superfluid weight in doped antiferromagnets

    Full text link
    The phase fluctuations of the condensate in doped antiferromagnets, described by a t-t'-J model and a suitable 1/N expansion, provide a mechanism for a Kosterlitz-Thouless (KT) type of transition to a superconducting state below T_{c}. In this paper, we present a Monte Carlo study of the corresponding superfluid weight D_{s}(T) in the classical (large-N) limit, as a function of temperature and doping. Consistent with generic experimental trends, D_{s}(T) exhibits a T-linear decrease at low temperatures, with the magnitude of the slope D_{s}'(0) increasing upon doping. Finite-size scaling in the underdoped regime predicts values for the dimensionless ratio A=k_{B}T_{c}/D_{s}(0) of order unity, with A=0.4435(5) in the half-filled-band limit, thus confirming D_{s}(0) as the fundamental energy scale determining T_{c}. Our Monte Carlo results for D_{s}(T)/D_{s}(0) vs k_{B}T/D_{s}(0), at 10% hole doping, are found to be in reasonable agreement with recent measurements on La_{2-x}Sr_{x}CuO_{4}, with x=0.10, throughout the temperature range below the theoretical KT transition temperature T_{c}.Comment: 9 pages, REVTEX file (4 Postscript figures). To appear in Phys. Rev.

    The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

    Get PDF
    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.Comment: 17 pages, 11 figures, accepted for publication by MNRA

    Selenoprotein gene nomenclature

    Get PDF
    The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4 and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine-R-sulfoxide reductase 1) and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15 kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV) and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates

    SNP selection for genes of iron metabolism in a study of genetic modifiers of hemochromatosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We report our experience of selecting tag SNPs in 35 genes involved in iron metabolism in a cohort study seeking to discover genetic modifiers of hereditary hemochromatosis.</p> <p>Methods</p> <p>We combined our own and publicly available resequencing data with HapMap to maximise our coverage to select 384 SNPs in candidate genes suitable for typing on the Illumina platform.</p> <p>Results</p> <p>Validation/design scores above 0.6 were not strongly correlated with SNP performance as estimated by Gentrain score. We contrasted results from two tag SNP selection algorithms, LDselect and Tagger. Varying r<sup>2 </sup>from 0.5 to 1.0 produced a near linear correlation with the number of tag SNPs required. We examined the pattern of linkage disequilibrium of three levels of resequencing coverage for the transferrin gene and found HapMap phase 1 tag SNPs capture 45% of the ≄ 3% MAF SNPs found in SeattleSNPs where there is nearly complete resequencing. Resequencing can reveal adjacent SNPs (within 60 bp) which may affect assay performance. We report the number of SNPs present within the region of six of our larger candidate genes, for different versions of stock genotyping assays.</p> <p>Conclusion</p> <p>A candidate gene approach should seek to maximise coverage, and this can be improved by adding to HapMap data any available sequencing data. Tag SNP software must be fast and flexible to data changes, since tag SNP selection involves iteration as investigators seek to satisfy the competing demands of coverage within and between populations, and typability on the technology platform chosen.</p
    • 

    corecore