12 research outputs found

    Radiations and male fertility

    Get PDF
    During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality

    Fetal weight normograms for singleton pregnancies in a Jordanian population

    No full text
    <b>Background and Objectives</b> : Estimated intrauterine fetal weight (EIUFW) is important for reducing prenatal mortality and morbidity through early detection of faltering growth. Our objectives were to develop patterns of ultrasonically determined EIUFW by gestational age, for normal singleton pregnancies, and to assess the effect of a number of variables on EIUFW. <b> Methods</b> : Ultrasonically, EIUFW was obtained from 600 pregnant women who were at 20 to 42 weeks of gestation (WG). EIUFW was categorized into low weight and normal weight using the tenth and twentieth percentile as the cut-off points. Logistic regression was used to calculate the odds ratio and their 95&#x0025; confidence limits for a number of risk factors hypothesized to be associated with low fetal weight. EIUFW percentiles (twenty-fifth, fiftieth, and seventy-fifth), by gestational age and sex, were calculated for singleton pregnancies. <b> Results</b> : Up to 32 WG there was no statistically significant difference between male and female fetuses in EIUFW. Between 32 and 39 WG males had significantly (<i>P</i>&#60; .05) higher fetal weight than females. Charts of ultrasonically determined EIUFW by gestational age and sex for singleton pregnancies were created. A number of variables were significantly associated with EIUFW such as pregnancy weight gain, maternal hemoglobin level, frequency of antenatal visits, smoking status, and fetal sex. <b>Conclusion</b> : Weight gain during pregnancy should be encouraged for pregnant mothers who gain less than one kilogram per month in the second and third trimester. A prospective study on a national representative sample in Jordan is needed to generate our own standards for fetal growth

    Utilization of fluorescent probe association for simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes of rooster spermatozoa

    No full text
    This experiment was designed with the objective of developing a simple, practical, and high repeatability technique for the simultaneous evaluation of the integrity of the plasmatic and acrosomal membranes, as well as funcional mitochondria of domestic fowl spermatozoa using an association of fluorescent probes. Four ejaculates (motility > 80% and abnormal morphology < 10%) from each of six Ross male broiler breeder (n=24) were diluted in TALP sperm medium (25x10(6) spermatozoa/mL) and split into two aliquots, and one of these aliquots was flash frozen in liquid nitrogen and thawed to damage all cellular membranes. Three treatments were prepared from these aliquots, with the following ratios of Fresh semen:Flash frozen semen: 100:0 (T100), 50:50 (T50), and 0:100 (T0). A 150-µL aliquot of diluted semen was placed in a microcentrifuge tube with the addition of 2-µL PI, 2-µL MITO, and 50-µL FITC-PSA, and incubated at 38.5º C/8 min in the dark. An 8-µL sample was placed on a slide, coverslipped, and examined by epifluorescence microscopy. Each sample had 200 cells counted and classified based on the fluorescence emitted by each probe. By regression analysis, plasma membrane integrity, as detected by PI, was determined as: v=4.17+0.82X (R²=0.95). Acrosome integrity, as detected by FITC-PSA, generated the equation: v=4.19+0.84X (R²=0.96). Functional mitochondria was estimated by the equation v=3.20+0.83X (R²=0.96). This is an efficient technique to simultaneously evaluate plasmatic, acrosomal, and mitochondrial membranes in fowl sperm. It is suggested that its application in flow cytometry systems allows this methodology to be applied in large scale
    corecore