3,716 research outputs found

    Diffractive photoproduction of heavy quarks in hadronic collisions

    Full text link
    In this letter we study the diffractive photoproduction of heavy quarks in hadronic (pp/pA/AA) interactions for Tevatron and LHC energies. The integrated cross section and rapidity distribution for the process h_1 h_2 --> h_1 h_2 QQBAR (h_i = p,A and Q = c,b) are estimated using the Color Glass Condensate (CGC) formalism. Our results indicate that this production channel has larger cross sections than the competing reactions of double diffractive production and coherent AA reactions initiated by two-photon collisions.Comment: 4 pages, 2 figures, 1 table. Version to be published in Physical Review

    Photoproduction of ρ0\rho^0 mesons in ultraperipheral heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC)

    Full text link
    We investigate the photoproduction of ρ\rho mesons in ultraperipheral heavy ion collisions at RHIC and LHC energies in the dipole approach and within two phenomenological models based on the the Color Glass Condensate (CGC) formalism. We estimate the integrated cross section and rapidity distribution for meson production and compare our predictions with the data from the STAR collaboration. In particular, we demonstrate that the total cross section at RHIC is strongly dependent on the energy behavior of the dipole-target cross section at low energies, which is not well determined in the dipole approach. In contrast, the predictions at midrapidities at RHIC and in the full rapidity at LHC are under theoretical control and can be used to test the QCD dynamics at high energies.Comment: 6 pages, 5 figures, 1 table. Improved version to be published in Physical Review

    A note on the cylindrical collapse of counter-rotating dust

    Full text link
    We find analytical solutions describing the collapse of an infinitely long cylindrical shell of counter-rotating dust. We show that--for the classes of solutions discussed herein--from regular initial data a curvature singularity inevitably develops, and no apparent horizons form, thus in accord with the spirit of the hoop conjecture.Comment: 8 pages, LaTeX, ijmpd macros (included), 1 eps figure; accepted for publication in Int. J. Mod. Phys.

    Vector Meson Production in Coherent Hadronic Interactions: An update on predictions for RHIC and LHC

    Full text link
    In this letter we update our predictions for the photoproduction of vector mesons in coherent pppp and AAAA collisions at RHIC and LHC energies using the color dipole approach and the Color Glass Condensate (CGC) formalism. In particular, we present our predictions for the first run of the LHC at half energy and for the rapidity dependence of the ratio between the J/ΚJ/\Psi and ρ\rho cross sections at RHIC energies.Comment: 4 pages, 3 figure

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Nuclear charm and bottom production: a comparison among high energy approaches

    Get PDF
    We calculate the nucleon and nuclear photoproduction cross sections for heavy quarks within the k⊄k_{\perp}-factorization formalism, considering the current high energy approaches which include nuclear and saturation effects. Our results demonstrate that a future experimental analysis of this process would allow to constraint the QCD dynamics at high energies.Comment: 10 pages, 2 figures. Version to be published in Eur. Phys. J.

    Nuclear shadowing from exclusive quarkonium photoproduction at the BNL RHIC and CERN LHC

    Full text link
    The photonuclear production of vector mesons in ultraperipheral heavy ion collisions is investigated within the collinear approach using different parameterizations for the nuclear gluon distribution. The integrated cross section and the rapidity distribution for the AA→VAAAA \to V AA (V=J/Κ,΄V = J/\Psi, \Upsilon) process are computed for energies of RHIC and LHC. A comparison with the recent PHENIX data on coherent production of J/ΚJ/\Psi mesons is also presented. We demonstrate that the study of the exclusive quarkonium photoproduction can be used to constrain the nuclear effects in the gluon distribution.Comment: 8 pages, 4 figures, 2 tables. Version to be published in Physical Review

    The QCD Pomeron in ultraperipheral heavy ion collisions: III. Photonuclear production of heavy quarks

    Get PDF
    We calculate the photonuclear production of heavy quarks in ultraperipheral heavy ion collisions. The integrated cross section and the rapidity distribution are computed employing sound high energy QCD formalisms as the collinear and semihard approaches as well as the saturation model. In particular, the color glass condensate (CGC) formalism is also considered using a simple phenomenological parameterization for the color field correlator in the medium, which allow us to obtain more reliable estimates for charm and bottom production at LHC energies.Comment: 15 pages, 2 figures. Extended version to be published in Eur. Phys. J.

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200
    • 

    corecore