1,434 research outputs found

    Collective oscillations in disordered neural networks

    Get PDF
    We investigate the onset of collective oscillations in a network of pulse-coupled leaky-integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O.V. Popovych at al., Phys. Rev. E 71} 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to scale to zero for N going to infinite, with an exponent that is different for the two types of disorder. In the thermodynamic limit, the random-network dynamics reduces to that of a fully homogenous system with a suitably scaled coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to zero as 1/N^2, analogously to the scaling found for the `splay state'.Comment: 8.5 Pages, 12 figures, submitted to Physical Review

    Altered intrinsic functional coupling between core neurocognitive networks in Parkinson\u27s disease

    Get PDF
    Parkinson3s disease (PD) is largely attributed to disruptions in the nigrostriatal dopamine system. These neurodegenerative changes may also have a more global effect on intrinsic brain organization at the cortical level. Functional brain connectivity between neurocognitive systems related to cognitive processing is critical for effective neural communication, and is disrupted across neurological disorders. Three core neurocognitive networks have been established as playing a critical role in the pathophysiology of many neurological disorders: the default-mode network (DMN), the salience network (SN), and the central executive network (CEN). In healthy adults, DMN–CEN interactions are anti-correlated while SN–CEN interactions are strongly positively correlated even at rest, when individuals are not engaging in any task. These intrinsic between-network interactions at rest are necessary for efficient suppression of the DMN and activation of the CEN during a range of cognitive tasks. To identify whether these network interactions are disrupted in individuals with PD, we used resting state functional magnetic resonance imaging (rsfMRI) to compare between-network connectivity between 24 PD participants and 20 age-matched controls (MC). In comparison to the MC, individuals with PD showed significantly less SN–CEN coupling and greater DMN–CEN coupling during rest. Disease severity, an index of striatal dysfunction, was related to reduced functional coupling between the striatum and SN. These results demonstrate that individuals with PD have a dysfunctional pattern of interaction between core neurocognitive networks compared to what is found in healthy individuals, and that interaction between the SN and the striatum is even more profoundly disrupted in those with greater disease severity

    Salience and default mode network coupling predicts cognition in aging and Parkinson’s disease

    Full text link
    OBJECTIVES: Cognitive impairment is common in Parkinson’s disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. METHODS: We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. RESULTS: PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson’s disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. CONCLUSIONS: Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson’s disease.Published versio

    Letter by Golomb and Hall Regarding Article, "Temporary Emergency Guidance to US Stroke Centers During the COVID-19 Pandemic"

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.We report a 66-year-old nonsmoking male with past medical history of remote cardiac stents on daily baby aspirin. He presented to the Emergency Department with a 5-day history of low-grade fever and 1-day history of coughing. For this patient, we suspect the pressure from severe coughing and the drop in platelet count due to COVID-19 combined with platelet dysfunction from aspirin use all contributed to his spinal stroke. We suggest that rare patients may be at risk for hemorrhagic stroke as a complication of COVID-19 and that screening for COVID-19 be considered as part of the stroke workup during the current pandemic

    An Optimal Algorithm for Tiling the Plane with a Translated Polyomino

    Full text link
    We give a O(n)O(n)-time algorithm for determining whether translations of a polyomino with nn edges can tile the plane. The algorithm is also a O(n)O(n)-time algorithm for enumerating all such tilings that are also regular, and we prove that at most Θ(n)\Theta(n) such tilings exist.Comment: In proceedings of ISAAC 201

    Violating conformal invariance: Two-dimensional clusters grafted to wedges, cones, and branch points of Riemann surfaces

    Get PDF
    We present simulations of 2-d site animals on square and triangular lattices in non-trivial geomeLattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of 2-d site animals on square and triangular lattices in non-trivial geometries. The simulations are done with the newly developed PERM algorithm which gives very precise estimates of the partition sum, yielding precise values for the entropic exponent θ\theta (ZNμNNθZ_N \sim \mu^N N^{-\theta}). In particular, we studied animals grafted to the tips of wedges with a wide range of angles α\alpha, to the tips of cones (wedges with the sides glued together), and to branching points of Riemann surfaces. The latter can either have kk sheets and no boundary, generalizing in this way cones to angles α>360\alpha > 360 degrees, or can have boundaries, generalizing wedges. We find conformal invariance behavior, θ1/α\theta \sim 1/\alpha, only for small angles (α2π\alpha \ll 2\pi), while θconstα/2π\theta \approx const -\alpha/2\pi for α2π\alpha \gg 2\pi. These scalings hold both for wedges and cones. A heuristic (non-conformal) argument for the behavior at large α\alpha is given, and comparison is made with critical percolation.Comment: 4 pages, includes 3 figure

    Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Get PDF
    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications

    Effects of Parkinson’s disease on optic flow perception for heading direction during navigation

    Full text link
    Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the effects of PD on the use of optic flow for heading direction, walking parameters, and interlimb coordination during navigation, examining the contributions of OS and spatial frequency (dot density). Twelve individuals with PD without dementia, 18 age-matched normal control adults (NC), and 23 young control adults (YC) walked through a virtual hallway at about 0.8 m/s. The hallway was created by random dots on side walls. Three levels of OS (0.8, 1.2, and 1.8 m/s) and dot density (1, 2, and 3 dots/m2) were presented on one wall while on the other wall, OS and dot density were fixed at 0.8 m/s and 3 dots/m2, respectively. Three-dimensional kinematic data were collected, and lateral drift, walking speed, stride frequency and length, and frequency, and phase relations between arms and legs were calculated. A significant linear effect was observed on lateral drift to the wall with lower OS for YC and NC, but not for PD. Compared to YC and NC, PD veered more to the left under OS and dot density conditions. The results suggest that healthy adults perceive optic flow for heading direction. Heading direction in PD may be more affected by the asymmetry of dopamine levels between the hemispheres and by motor lateralization as indexed by handedness.Published versio

    Phase-locking in weakly heterogeneous neuronal networks

    Full text link
    We examine analytically the existence and stability of phase-locked states in a weakly heterogeneous neuronal network. We consider a model of N neurons with all-to-all synaptic coupling where the heterogeneity is in the firing frequency or intrinsic drive of the neurons. We consider both inhibitory and excitatory coupling. We derive the conditions under which stable phase-locking is possible. In homogeneous networks, many different periodic phase-locked states are possible. Their stability depends on the dynamics of the neuron and the coupling. For weak heterogeneity, the phase-locked states are perturbed from the homogeneous states and can remain stable if their homogeneous conterparts are stable. For enough heterogeneity, phase-locked solutions either lose stability or are destroyed completely. We analyze the possible states the network can take when phase-locking is broken.Comment: RevTex, 27 pages, 3 figure

    Functional correlates of optic flow motion processing in Parkinson’s disease

    Get PDF
    The visual input created by the relative motion between an individual and the environment, also called optic flow, influences the sense of self-motion, postural orientation, veering of gait, and visuospatial cognition. An optic flow network comprising visual motion areas V6, V3A, and MT+, as well as visuo-vestibular areas including posterior insula vestibular cortex (PIVC) and cingulate sulcus visual area (CSv), has been described as uniquely selective for parsing egomotion depth cues in humans. Individuals with Parkinson’s disease (PD) have known behavioral deficits in optic flow perception and visuospatial cognition compared to age- and education-matched control adults (MC). The present study used functional magnetic resonance imaging (fMRI) to investigate neural correlates related to impaired optic flow perception in PD. We conducted fMRI on 40 non-demented participants (23 PD and 17 MC) during passive viewing of simulated optic flow motion and random motion. We hypothesized that compared to the MC group, PD participants would show abnormal neural activity in regions comprising this optic flow network. MC participants showed robust activation across all regions in the optic flow network, consistent with studies in young adults, suggesting intact optic flow perception at the neural level in healthy aging. PD participants showed diminished activity compared to MC particularly within visual motion area MT+ and the visuo-vestibular region CSv. Further, activation in visuo-vestibular region CSv was associated with disease severity. These findings suggest that behavioral reports of impaired optic flow perception and visuospatial performance may be a result of impaired neural processing within visual motion and visuo-vestibular regions in PD.Published versio
    corecore