135 research outputs found

    Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves

    Get PDF
    The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein are the key regulator for the spatial and temporal organization of plant development. In particular auxin induces the polar localization of its own efflux facilitator. Due to this positive feedback auxin flow is directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization model. Solving the model analytically we uncover an excitable polarization front that triggers a polar distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their initiation site we suggest a possible resolution to the puzzling occurrence of bipolar cells, such we offer an explanation for the development of closed, looped veins. Employing non-linear analysis we identify the role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic rates of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for publication in Eur. Phys. J.

    Accidental hepatic artery ligation in humans

    Get PDF
    Despite the vast amount of information from experimental animals, it has been difficult to obtain a clear-cut picture of the effects of ligation of the hepatic artery in humans with relatively normal livers. The last complete review of this subject in 1933 indicated that a mortality in excess of 50 per cent could be expected in non-cirrhotic patients with injury of the hepatic artery or its principal branches. Five cases of dearterialization of the normal human liver have been observed. These were due to accidental interruption of the right hepatic artery in four and the proper hepatic artery in one. The injured vessel was repaired in one case and ligated in the others. In four of the five patients the vascular disruption was the sole injury. In the other the common bile duct was also lacerated. There was no evidence of hepatic necrosis in any case although one patient died from complications of common duct repair. Transient changes in SGOT and temporary low grade bilirubinemia were commonly noted. In addition, all cases of ligation of the hepatic artery reported since 1933 have been compiled. On the basis of reviewed, as well as the presently reported cases, it is concluded that ligation of the hepatic artery or one of its branches in the patient with relatively normal hepatic function is not ordinarily fatal in the otherwise uncomplicated case. Adequate perfusion of the liver can usually be provided by the remaining portal venous flow and whatever arterial collaterals are present, unless additional factors further reduce the portal venous flow or increase hepatic oxygen need. These factors include fever, shock and anoxia. The key to therapy in unreconstructed injuries to the hepatic artery is avoidance of these secondary influences. © 1964

    Carotid artery intima-media thickness, distensibility and elasticity: population epidemiology and concordance in Australian children aged 11-12 years old and their parents

    Get PDF
    Objectives: To describe a well-established marker of cardiovascular risk, carotid intima-media thickness (IMT) and related measures (artery distensibility and elasticity) in children aged 11-12 years old and mid-life adults, and examine associations within parent-child dyads. Design: Cross-sectional study (Child Health CheckPoint), nested within a prospective cohort study, the Longitudinal Study of Australian Children (LSAC). Setting Assessment centres in seven Australian major cities and eight selected regional towns, February 2015 to March 2016. Participants: Of all participating CheckPoint families (n=1874), 1489 children (50.0% girls) and 1476 parents (86.8% mothers) with carotid IMT data were included. Survey weights and methods were applied to account for LSAC's complex sample design and clustering within postcodes and strata. Outcome measures: Ultrasound of the right carotid artery was performed using standardised protocols. Primary outcomes were mean and maximum far-wall carotid IMT, quantified using semiautomated edge detection software. Secondary outcomes were carotid artery distensibility and elasticity. Pearson's correlation coefficients and multivariable linear regression models were used to assess parent-child concordance. Random effects modelling on a subset of ultrasounds (with repeated measurements) was used to assess reliability of the child carotid IMT measure. Results: The average mean and maximum child carotid IMT were 0.50 mm (SD 0.06) and 0.58 mm (SD 0.05), respectively. In adults, average mean and maximum carotid IMT were 0.57 mm (SD 0.07) and 0.66 mm (SD 0.10), respectively. Mother-child correlations for mean and maximum carotid IMT were 0.12 (95% CI 0.05 to 0.23) and 0.10 (95% CI 0.03 to 0.21), respectively. For carotid artery distensibility and elasticity, mother-child correlations were 0.19 (95% CI 0.10 to 0.25) and 0.11 (95% CI 0.02 to 0.18), respectively. There was no strong evidence of father-child correlation in any measure. Conclusions: We provide Australian values for carotid vascular measures and report a modest mother-child concordance. Both genetic and environmental exposures are likely to contribute to carotid IMT.</div

    The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and Hi overview

    Get PDF
    Context. The Galactic plane has been observed extensively by a large number of Galactic plane surveys from infrared to radio wavelengths at an angular resolution below 40". However, a 21 cm line and continuum survey with comparable spatial resolution is still missing. Aims. The first half of THOR data (l = 14.0 37.9, and l = 47.1 51.2, |b| < 1.25) has been published in our data release 1 paper (Beuther et al. 2016). With this data release 2 paper, we publish all the remaining spectral line data and Stokes I continuum data with high angular resolution (1000–4000) including a new H i dataset for the whole THOR survey region (l = 14.0 67.4 and |b| < 1.25). As we have published the results of OH lines and continuum emission elsewhere, we concentrate on the H i analysis in this paper. Methods. With the Karl G. Jansky Very Large Array (VLA) in C-configuration, we observed a large portion of the first Galactic quadrant achieving an angular resolution of < 40. At L Band, the WIDAR correlator at the VLA was set to cover the 21 cm H i line, four OH transitions, a series of Hn↔ radio recombination lines (RRLs; n = 151 to 186), and eight 128 MHz wide continuum spectral windows (SPWs) simultaneously. Results. We publish all OH and RRL data from the C-configuration observations, and a new H i dataset combining VLA C+D+GBT (VLA D-configuration and GBT data are from the VLA Galactic Plane Survey, Stil et al. 2006) for the whole survey. The H i emission shows clear filamentary substructures at negative velocities with low velocity crowding. The emission at positive velocities is more smeared-out likely due to higher spatial and velocity crowding of structures at the positive velocities. Comparing to the spiral arm model of the Milky Way, the atomic gas follows the Sagittarius and Perseus Arm well but with significant material in the inter-arm regions. With the C-configuration-only H i+continuum data, we produced a H i optical depth map of the THOR areal coverage from 228 absorption spectra with the nearest-neighbor method. With this ⌧ map, we corrected the H i emission for optical depth and the derived column density is 38% higher than the column density with optically thin assumption. The total H i mass with optical depth correction in the survey region is 4.7⇄108 M, 31% more than the mass derived assuming the emission is optically thin. If we apply this 31% correction to the whole Milky Way, the total atomic gas mass would be 9.4–10.5⇄109 M. Comparing the H i with existing CO data, we find a significant increase in the atomic-to-molecular gas ration from the spiral arms to the inter-arm regions. Conclusions. The high sensitivity and resolution THOR H i dataset provides an important new window on the physical and kinematic properties of gas in the inner Galaxy. Although the optical depth we derive is a lower limit, our study shows that the optical depth correction is significant for H i column density and mass estimation. Together with the OH, RRL and continuum emission from the THOR survey, these new H i data provide the basis for high angular-resolution studies of the interstellar medium (ISM) in different phases

    Spatial rigid-multi-body systems with lubricated spherical clearance joints : modeling and simulation

    Get PDF
    The dynamic modeling and simulation of spatial rigid-multi-body systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.Fundação para a CiĂȘncia e a Tecnologia (FCT

    'Education, education, education' : legal, moral and clinical

    Get PDF
    This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students

    A parametric study on the dynamic response of planar multibody systems with multiple clearance joints

    Get PDF
    A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Feedback in W94A diagnosed with Radio Recombination Lines and Models

    Get PDF
    We present images of radio recombination lines (RRLs) at wavelengths around 18 cm from the star-forming region W49A to determine the kinematics of ionized gas in the THOR survey (The Hi/OH/Recombination line survey of the inner Milky Way) at an angular resolution of 16:08 X 13:08. The distribution of ionized gas appears to be affected by feedback processes from the star clusters inW49A. The velocity structure of the RRLs shows a complex behaviour with respect to the molecular gas. We find a shell-like distribution of ionized gas as traced by RRL emission surrounding the central cluster of OB stars in W49A. We describe the evolution of the shell with the recent feedback model code warpfield that includes the important physical processes and has previously been applied to the 30 Doradus region in the Large Magellanic Cloud. The cloud structure and dynamics of W49A are in agreement with a feedbackdriven shell that is re-collapsing. The shell may have triggered star formation in other parts of W49A. We suggest that W49A is a potential candidate for star formation regulated by feedback-driven and re-collapsing shells

    Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints : computational and experimental approaches

    Get PDF
    The main objective of this work is to present a computational and experimental study on the contact forces developed in revolute clearance joints. For this purpose, a well-known slider-crank mechanism with a revolute clearance joint between the connecting rod and slider is utilized. The intra-joint contact forces that generated at this clearance joints are computed by considered several different elastic and dissipative approaches, namely those based on the Hertz contact theory and the ESDU tribology-based for cylindrical contacts, along with a hysteresis-type dissipative damping. The normal contact force is augmented with the dry Coulomb’s friction force. In addition, an experimental apparatus is use to obtained some experimental data in order to verify and validate the computational models. From the outcomes reported in this paper, it is concluded that the selection of the appropriate contact force model with proper dissipative damping plays a significant role in the dynamic response of mechanical systems involving contact events at low or moderate impact velocities.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Gravitational Collapse and Disk Formation in Magnetized Cores

    Get PDF
    We discuss the effects of the magnetic field observed in molecular clouds on the process of star formation, concentrating on the phase of gravitational collapse of low-mass dense cores, cradles of sunlike stars. We summarize recent analytic work and numerical simulations showing that a substantial level of magnetic field diffusion at high densities has to occur in order to form rotationally supported disks. Furthermore, newly formed accretion disks are threaded by the magnetic field dragged from the parent core during the gravitational collapse. These disks are expected to rotate with a sub-Keplerian speed because they are partially supported by magnetic tension against the gravity of the central star. We discuss how sub-Keplerian rotation makes it difficult to eject disk winds and accelerates the process of planet migration. Moreover, magnetic fields modify the Toomre criterion for gravitational instability via two opposing effects: magnetic tension and pressure increase the disk local stability, but sub-Keplerian rotation makes the disk more unstable. In general, magnetized disks are more stable than their nonmagnetic counterparts; thus, they can be more massive and less prone to the formation of giant planets by gravitational instability.Comment: Chapter 16 in "Magnetic Fields in Diffuse Media", Springer-Verlag, eds. de Gouveia Dal Pino, E., Lazarian, A., Melioli,
    • 

    corecore