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Abstract 

The main objective of this work is to present a computational and experimental study on 

the contact forces developed in revolute clearance joints. For this purpose, a well-

known slider-crank mechanism with a revolute clearance joint between the connecting 

rod and slider is utilized. The intra-joint contact forces that generated at this clearance 

joints are computed by considered several different elastic and dissipative approaches, 

namely those based on the Hertz contact theory and the ESDU tribology-based for 

cylindrical contacts, along with a hysteresis-type dissipative damping. The normal 

contact force is augmented with the dry Coulomb’s friction force. In addition, an 

experimental apparatus is use to obtained some experimental data in order to verify and 

validate the computational models. From the outcomes reported in this paper, it is 

concluded that the selection of the appropriate contact force model with proper 

dissipative damping plays a significant role in the dynamic response of mechanical 

systems involving contact events at low or moderate impact velocities. 
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1. Introduction 

The problem of modeling joints with clearance in the context of multibody dynamics has 

been the subject of many investigations over the last few decades [1-20]. A 

comprehensive literature review on the topic of clearance joints was carried out by 

Haines [21] and more recently by Flores [22]. The literature indicates that most of this 

research is limited to theoretical modeling or computational studies. Therefore, it is not 

surprising that the literature reporting on experimental studies on mechanical systems 

with clearance joints is confined only to a few sources. Soong and Thompson [23] 

presented a theoretical and experimental investigation of the dynamic response of a slider-

crank mechanism with a revolute clearance joint, where the slider and the connecting rod 

accelerations were quantified by using accelerometers. A similar slider-crank mechanism 

was experimentally studied by Lankarani and his co-workers [24], which was considered 

to analyze the influence of input crank speed and clearance size on the system’s dynamic 

response. It was shown that the maximum amplitude of the impact acceleration increased 

with clearance size and the crank speed. In particular, for low crank speeds the apparent 

gross motion characteristics of the slider-crank mechanism remained unchanged. For high 

frequencies and larger clearances, however, the dynamic response was shown to be 

significantly altered. This work was subsequently extended by Flores [25] and Koshy 

[26]. The reported results clearly demonstrated the severe dynamic behavior in a 

clearance joint and provided a qualitative measure of the associated fatigue and wear 

phenomena in which the components must be reliably operate. More recently, Khemili 

and Romdhane [27] studied the dynamic behavior of a planar flexible slider-crank 

mechanism with clearance joints using computational and experimental tests. Erkaya and 

Uzmay [28] presented a quite interesting work, in which an extensive experimental data 

of a slider-crank mechanism with clearance joints was discussed. These last two works 

consider a similar test rig, where the system describes the motion in the vertical plane. 

Flores et al. [29] performed a combined numerical and experimental study on the 

dynamic response of a slider-crank mechanism with revolute clearance joints with the 

purpose of providing an experimental verification and validation of the predictive 

capabilities of the multibody clearance joint models. This study was supported in an 

experimental test rig, which consisted of a slider-crank mechanism with an adjustable 

radial clearance at the revolute joint between the slider and the connecting rod. The 

maximum slider acceleration, associated with the impact acceleration, was used as a 

measure of the impact severity. The correlation between the numerical and experimental 

results was presented leading to the validation of the models for the clearance joints. 
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It is well known that the constitutive contact force law utilized to describe 

contact-impact events plays a crucial role in predicting the dynamic response of 

mechanical systems and simulation of the engineering applications. Thus, this paper 

studies the influence of the use of different contact force models with dissipative 

damping on the dynamic response of mechanical including dry revolute clearance joints. 

In the sequel of this process, the fundamental characteristics of the most popular elastic 

and dissipative contact force models are revisited, in particular those based on the 

Hertz’s law, augmented with a hysteresis damping term [30]. A computational slider-

crank multibody model with a revolute clearance joint between the connecting rod and 

slider is developed and utilized to test the different contact force models. The procedure is 

performed using the commercial MSC.ADAMS software, in which the several 

constitutive laws are incorporated to compute the intra-joint contact forces developed at 

the clearance joint. In order to verify and validate this computational approach, the 

outcomes are compared with those obtained experimentally. From the results obtained on 

the dynamic behavior of system with clearance joints, the importance of the constitutive 

law selected to compute the contact forces is quantified.  

The remaining of this paper is organized as follows. Section 2 deals with the 

description of the conservative and dissipative contact force models utilized in the present 

work. In Section 3, a full characterization of the computational multibody model of the 

slider-crank mechanism with a revolute clearance joint is presented. This task has been 

performed using the MSC.ADAMS software. Section 4 presents the experimental test rig 

apparatus used to obtain the experimental data. The computational and experimental 

results are then presented and discussed in Section 5. Finally, in the last section, the main 

conclusions from this study are drawn, in the light of the assumptions and procedures 

underpinning this research. 

 

2. Contact force models utilized 
In order to efficiently and accurately evaluate the contact forces developed between the 

bearing and journal, in revolute clearance joints, special attention must be given to the 

numerical description of the constitutive law selected for the contact force model [31]. 

Information on the impact velocity, material properties of the colliding bodies and 

geometry characteristics of the surfaces in contact must be included into the force 

contact model. These characteristics are observed with a continuous contact force, in 

which the local deformation and contact force are considered as continuous functions 

[32]. Furthermore, it is important that the contact force model can add to the stable 
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integration of the multibody systems equation of motion. Thus, the main purpose of the 

section is to present a simple review of the constitutive laws utilized in this work. 

The simplest elastic contact force model is represented by a linear spring 

element, in which the spring embodies the elasticity of the contacting surfaces. This 

linear contact force model, also known as Hooke’s law, can be expressed as [33] 

  FN = kδ  (1)  

where FN denotes the normal contact force, k is the spring stiffness and δ represents the 

relative penetration or deformation between the colliding bodies. The spring stiffness of 

the Hooke contact force model can be evaluated by using analytical expressions for 

simple cases, obtained by means of finite element method or determined through 

experimental tests performed within the linear elastic domain [30]. In turn, the 

penetration is determined from the relative position of the contacting bodies. 

One primary weakness associated with this contact force model deals with the 

quantification of the spring constant, which depends on the geometric and material 

characteristics of the contacting bodies. Furthermore, the assumption of a linear relation 

between the penetration and the contact force is at best a rough approximation, because 

the contact force is affected by the shape, surface conditions and mechanical properties 

of the contacting bodies, all of which suggest a more complex relation. In addition, the 

contact force model given by Eq. (1) does not account for the energy loss during an 

impact event. 

The most popular contact force model for representing the collision between two 

spheres of isotropic materials is based on the work by Hertz, utilizing the theory of 

elasticity [34]. The Hertz contact theory is restricted to frictionless surfaces and 

perfectly elastic solids. The Hertz law relates the contact force with a nonlinear power 

function of penetration and is expressed as [35] 

  FN = Kδ n  (2)  

where K is a generalized stiffness parameter and δ has the same meaning as in Eq. (1). 

The exponent n is equal to 3/2 for the case where there is a parabolic distribution of 

contact stresses, as in the original work by Hertz [36]. For materials such as glass or 

polymer, the value of the exponent n can be either higher or lower, leading to a 

convenient contact force expression which is based on experimental work, but that 

should not be confused with the Hertz theory [37-40]. 

One advantage of the Hertz contact law is that it considers the geometric and 

material characteristics of the contacting surfaces, which are of paramount importance 
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in the contact dynamic responses. For instance, for two spheres of isotropic materials in 

contact, the generalized stiffness parameter is a function of the radii of the sphere i and j 

(Ri and Rj) and the material properties as [41] 

 
  
K = 4

3(σ i +σ j )
Ri Rj

Ri + Rj

 (3)  

in which the material parameters σi and σj are given by 

 
  
σ l =

1−υl
2

El

,     (l=i, j) (4)  

and the quantities υl and El are the Poisson’s ratio and the Young’s modulus associated 

with each sphere, respectively. It is important to note that, by definition, the radius is 

negative for concave surfaces (such as for the journal element) and positive for convex 

surfaces (such as for the bearing element) [42]. 

After an extensive review of the Hertz contact theory, Goldsmith [41] concluded 

that the Hertz theory provides a good approach of the contact process if the materials 

involved are hard and the initial impact velocity is low, that is, impacts slow enough 

that the bodies are deformed imperceptibly only. It is apparent that the Hertz contact 

law given by Eq. (2) is limited to contacts with elastic deformations and does not 

include energy dissipation. This contact force model represents the contact process as a 

nonlinear spring along the direction of collision. The advantages of the Hertz model 

relative to the Hooke’s law reside on its physical meaning represented by both its 

nonlinearity and by its relation between the generalized stiffness and geometry and 

material properties of the contacting surfaces. Although the Hertz law is based on the 

elasticity theory, some studies have been performed to extend its application to include 

the energy dissipation. In fact, the process of energy transfer is an extremely complex 

task of modeling contact events. When an elastic body is subjected to cyclic loads, the 

energy loss due to internal damping causes a hysteresis loop in the force-penetration 

diagram, which corresponds to energy dissipation. 

Hunt and Crossley [43] represented the contact force by the Hertz 

force-penetration law together with a non-linear viscoelastic element. Based on Hunt 

and Crossley’s work, Lankarani and Nikravesh [32] developed a contact force model 

with hysteresis damping for impact in multibody systems. They obtained an expression 

for the hysteresis damping factor by relating the kinetic energy loss by the impacting 

bodies to the energy dissipated in the system due to internal damping. The model uses 

the general trend of the Hertz contact law, in which a hysteresis damping function is 
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incorporated with the intent to represent the energy dissipated during the impact. The 

contact force model proposed by Lankarani and Nikravesh can be expressed as [32] 

 
   
FN = KLNδ

n 1+
3(1− cr

2 )
2

δ
δ (− )

⎡

⎣
⎢

⎤

⎦
⎥  (5)  

where the generalized stiffness parameter KLN can be evaluated by Eqs. (3) and (4), cr 

represents the coefficient of restitution,  δ  is the instantaneous relative normal 

penetration velocity and   δ
(− )  is the initial relative normal impact velocity. The contact 

force model given by Eq. (5) is valid for the cases in which the dissipated energy during 

the contact is relatively small when compared to the maximum absorbed elastic energy. 

Shivaswamy [44] demonstrated that at low impact velocities, the energy dissipation due 

to internal damping is the main contributor to energy loss. 

The contact force models given by Eqs. (2) and (5) are only valid for colliding 

bodies with ellipsoidal contact areas. For the contact between two parallel cylinders, as 

in the case of revolute joints with clearance, a literature search has revealed few and 

approximates force-penetration relations. It is worth nothing that the line contact 

assumes a precise parallel alignment of the colliding cylinders. Furthermore, a uniform 

force distribution over the length of the cylinders is also assumed and boundary effects 

are neglected. For the case of cylindrical contact forces, some authors suggest the use of 

the more general and straightforward force-penetration relation given by Eq. (5) but 

with an exponent, n, in the range of 1 to 1.5 [43]. The ESDU-78035 Tribology Series 

[45] presents some expressions for contact mechanics analysis suitable for engineering 

applications. For a circular contact area the ESDU-78035 model is the same as the pure 

Hertz law given by Eq. (2). For a rectangular contact, such as in the case of a pin inside 

a cylinder, the ESDU-78035 expression for the penetration-contact force is given by 

 
  
δ = FN

σ i +σ j

L
⎛

⎝
⎜

⎞

⎠
⎟ ln

4L(Ri − Rj )
FN (σ i +σ j )

⎛

⎝
⎜

⎞

⎠
⎟ +1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (6)  

where Ri,j and σi,j are the parameters shown in Eqs. (3) and (4), and L is the length of 

the cylinder. Since Eq. (6) is a nonlinear implicit function for FN, with a known 

penetration depth, FN can be evaluated. This nonlinear problem requires an iterative 

scheme, such as the Newton-Raphson method, for solving for the normal contact force, 

FN. It must be highlighted that Eq. (6) is purely elastic in nature, that is, it does not 

account for the energy dissipation during the contact process. 
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An extension of this force model can be obtained by combining the main 

features of Eqs. (5) and (6). The fundamental idea of this new and ad hoc approach is to 

use Eq. (6) to compute the generalized stiffness parameter as the slope of the curve 

FN(δ), around the point of instantaneous deformation, that is, K corresponding to a 

nonlinear stiffness coefficient. In turn, the damping term is evaluated as a combination 

of ratio between this nonlinear stiffness coefficient by the ESDU-78035 and the 

stiffness coefficient by Lankarani and Nikravesh approaches. Thus, the combined 

damping term can be expressed as [26] 

 
 
Dcombined = DLN

KESDU

KLN

 (7)  

where DLN is the damping coefficient derived by Lankarani and Nikravesh [32], KESDU 

and KLN are the stiffness coefficients proposed by ESDU-78095 and Lankarani and 

Nikravesh models, respectively. It must be stated that the value of the KESDU is 

evaluated as the slope of the curve normal contact force versus deformation around the 

point of instantaneous deformation. A similar idea has been successfully used in the 

works by Ravn [31] and Bai and Zhao [17] to investigate mechanical systems with 

revolute joints with clearance. 

It must be noted that there are other candidate models to be considered to 

compute in intra-joint contact forces in revolute clearance joints within the framework 

of multibody dynamics. For details, the interested reader is referred to references [46-

57]. 

It is known that the Coulomb law of sliding friction can represent the most 

fundamental and simplest model of friction between dry contacting surfaces. When 

sliding takes place, the Coulomb law states that the tangential friction force is 

proportional to the magnitude of the normal contact force at the contact point by 

introducing a coefficient of friction. Thus, in this work, the effect of  dry friction is 

modeled according to Coulomb’s law, which can be written as 

 
   
FT = −

vT

| vT |
c f FN  (8)  

where FT is the friction force, vT is the relative tangential velocity, cf is the coefficient of 

friction, and FN is the normal contact force [25, 29]. It should be mentioned that the 

friction model must be capable of detecting sliding, sticking and reverse sliding to avoid 

energy gains during impact. With the continuous analysis method used in this work, 

detection of stiction is performed during the period of contact. When the relative 
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tangential velocity of two impacting bodies approaches zero, stiction occurs. Stiction is 

then controlled as a force balance, i.e., the relative tangential velocity of the two 

impacting bodies is maintained at zero or a very low value by oscillating forces. Sliding 

is also possible, however, only present when the normal force is very small and not able 

to separate the bodies in impact [26]. 

 

3. Multibody modeling with a revolute clearance joint 
In this section, a brief description of the computational multibody model with a revolute 

joint with clearance is presented. For this purpose, the commercial MSC.ADAMS 

software is used [58]. The multibody model selected is the well-known slider-crank 

mechanism, in which the revolute joint between the connecting rod and slider is 

modeled as a clearance joint. A general overview of this multibody model is illustrated 

in Fig. 1, which replicates the original the experimental test rig developed by Lankarani 

et al. [24] at the Computational Mechanics Laboratory at the National Institute for 

Aviation Research, Wichita State University, Kansas, USA. 

 
Fig. 1 Multibody model of the slider-crank mechanism developed in MSC.ADAMS 

 

 All the bodies present in this multibody model are considered to be rigid and set 

to have the same inertia and mass properties as the corresponding components of the 

test rig. The crank, which is the driver element, is connected to the ground by using a 

revolute joint. The crank and connecting rod are constrained by an ideal revolute joint. 

In turn, the joint between the slider and connecting rod is model as a clearance revolute 

joint that is defined using a contact pair between the bearing (in green color) and journal 

(in red color). It is worth noting that this joint does not impose any kinematic constraint 

as in the case of ideal joint, but it imposes some forces when the contact between the 
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journal and bearing surfaces takes place. In the present work, the intra-joint contact 

forces that develop at this clearance joint are computed by incorporating the constitutive 

contact force laws, presented in the previous section, in the MSC.ADAMS software. 

Thus, it is possible to study the effect of using different force models on the system 

response. ADAMS was configured to use the IMPACT model, which treats contact like 

a non-linear spring-damper, based on penetration and velocity of penetration, and 

includes a Coulomb friction model. IMPACT provides a simple Coulomb friction 

model for tangential friction only, where the coefficient of friction is a function of slip 

velocity [58]. The disadvantage when using a friction model such as the one represented 

by Eq. (8), for simulation or control purpose, is the problem of detecting when the 

relative tangential velocity is zero. A solution for this problem is found in the model 

proposed by Karnopp, which was developed to overcome the problems with zero 

velocity detection and to avoid switching between different state equations for sticking 

and sliding [59]. The drawback with this model is that it is so strongly coupled with the 

rest of system. The external force is an input to the model and this force is not always 

explicitly given. Variations of the Karnopp model are widely used since they allow 

efficient simulations, such as the modified Karnopp model by Centea et al. [60] and the 

reset integrator model by Haessig and Friedland [61]. In fact, the presence of friction in 

the contact surfaces makes the contact problem more complicated as the friction may 

lead to different modes, such as sticking or sliding. For instance, when the relative 

tangential velocity of two impacting bodies approaches zero, stiction occurs. Indeed, as 

pointed out by Ahmed et al. [62], the friction model must be capable of detecting 

sliding, sticking and reverse sliding to avoid energy gains during impact. This work was 

developed for the treatment of impact problems in jointed open loop multibody systems. 

Lankarani [63] extends Ahmed formulation to the analysis of impact problems with 

friction in any general multibody system including both open and closed loop systems. 

One of the most critical aspects when dealing with contact problems is the contact 

detection approach. Initially, the default contact detection library named RAPID for the 

MSC.ADAMS code was considered [58]. This is a polygon interference detection 

algorithm implementation [64], which has a good computational performance, albeit at 

some cost in terms of accuracy. Based on preliminary computational analysis with 

RAPID library, some numerical instabilities were observed and the outcomes obtained 

were very unsatisfactory [26]. In order to overcome these difficulties, an alternative 

library, the PARASOLIDS library, was considered. With this solution a good tradeoff 

between computational performance and accuracy was observed. 
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The connecting rod is supported on the slider element using a friction plate, as it is 

shown in Fig. 2. This plate served to simulate the friction between the connecting rod 

and the top of the slider in the experimental setup. The slider itself is mounted on a 

translational joint with friction. It was noticed that the predominant source of resistive 

force in the test rig linear bearing was not dry friction, but due to the thick lubricant 

used [26]. This viscosity was simulated by adding a translational spring damper element 

with the stiffness set to zero. This damping element is represented in Fig. 1. 

 
Fig. 2 Slider model with the slider plate 

 

 

4. Experimental model with a revolute clearance joint 

This section briefly describes the experimental test rig constructed with the intent to 

provide data that can support the identification of different numerical models used to 

determine the intra-joint contact force developed at the revolute clearance joints. Figure 

3 shows an overall view of the experimental apparatus of the slider-crank mechanism, 

in which the revolute joint that connects the slider and connecting rod has a variable 

radial clearance [24-26]. This type of joint was chosen due to its simplicity and 

importance in the field of machines and mechanisms.  

 

 
Fig. 3 Experimental slider-crank mechanism 

Slider plate 

Joint clearance 
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The main sub-assembly of the experimental test rig consists of a slider-crank 

mechanism with an adjustable radial clearance at the revolute joint between the slider 

and the connecting rod. This joint was designed as a dry journal-bearing. The remaining 

kinematic joints were constructed as close to the ideal joints as possible, that is, with 

minimum clearance and friction in order to minimize any contamination of the data that 

were intended to be measured. Moreover, these joints were lightly oiled to minimize the 

friction in their connections. A standard sleeve element was press-fitted to the extremity 

of the connecting rod, working as bearing, with its diameter fixed to a very tight 

tolerance. The journal was rigidly connected to the sliding block and incorporates a 

standard pin with a variable diameter. Thus, the clearance at the test journal-bearing can 

be altered by simply changing the pin. A particular journal-bearing set was also 

manufactured in order to simulate an ideal or zero-clearance joint, which is used to 

obtain the reference data associated with an ideal mechanism. The crankshaft was keyed 

to the crank and it was supported by ball bearings. A needle bearing, with minimal 

radial clearance and high rigidity, connects the crank to the connecting rod. The sliding 

block component is screwed onto a linear translational bearing, which has a precision 

preloaded system with zero-clearances [24]. Table 1 shows the type of joints used in the 

experimental slider-crank mechanism and their nominal or operating clearances. Thus, 

for numerical purposes, they can be considered as ideal or zero-clearance joints [25]. 

 

Table 1 Type of joints used in the slider-crank mechanism and the corresponding 
nominal clearances 

Connection Joint type Diameter [mm] Clearance [mm] 
Ground – Crank Ball bearing 17.0 0.009 

Crank – Connecting rod Needle bearing 10.0 0.005 
Connecting rod – Slider Journal-bearing 22.2 0.002 

Ground – Slider Translational bearing – 0.001 
 

An accelerometer and a linear voltage differential transducer (LVDT) were used 

to monitor the slider acceleration and displacement, respectively. The slider velocity can 

be obtained either by performing the numerical integration of the acceleration value, or 

the numerical differentiation of the displacement data. The impact force between the 

journal and bearing was measured indirectly, that is, the impact accelerations are 

directly related to the impact forces. 

The slider-crank mechanism works on the horizontal plane and, due to its 

rigidity and alignment, the gravitational effects on the system’s dynamic responses can 

be neglected. The mechanism components were built entirely from steel and, hence for 
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practical purposes, were assumed to be perfectly rigid. The connecting rod was built 

with a hollow cross-section in order to reduce the mass, while maintaining a high 

stiffness and, thus, reducing the flexibility effects. The slider-crank mechanism and all 

other mechanical components were mounted on a heavy stiff frame. A summary of the 

physical properties of the experimental slider-crank model is given in Table 2, where 

the crank inertia properties include the shaft, encoder, torque sensor and flywheel. 

Similarly, the slider-block inertia properties take into account the linear bearing and the 

accelerometer characteristics. The overall mass of the experimental equipment, 

including frame and moving parts, was about 130 kg [25]. The test rig is used to study 

the response of the systems for a 1 mm clearance between the connecting rod and the 

slider. 

Table 2 Physical properties of the experimental slider-crank mechanism 
Body Length [m] Mass [kg] Moment of inertia [kgm2] 
Crank 0.05 17.900 0.460327 

Connecting rod 0.30 1.130 0.015300 
Sliding block - 1.013 0.000772 

 

5. Results and discussion 

The main goal of this section is to assess the influence of using of different contact 

force models on the dynamic response of the slider-crank mechanism. For this purpose, 

the computational and experimental models presented in the previous sections are 

utilized. The system is actuated by a motor connected to the crank element, which 

rotates with a constant angular velocity equal to 177 rpm. The clearance of the revolute 

joint that connects the slider and connecting rod is 1 mm. Furthermore, the five contact 

force models described in Section 2 are used to model the interaction between the 

journal and bearing, which are augmented with the dry Coulomb’s friction law. The 

dynamic behavior of the system is quantified by plotting the linear slider acceleration. 

The computational and experimental results correspond to four complete crank rotations 

after the steady state operating regime has been reached.  

 In the present study a single scenario associated with the relatively low operating 

input crank speed (177 rpm) is considered in order to ensure that the contacts occur at 

low or moderate impact velocity, that is, velocities that can not cause plastic 

deformation. When the collisions between the journal and bearing surfaces takes place 

at high impact velocity, plastic or permanent will occur and, consequently, the contact 

force models considered in this study can not be utilized since they are only valid for 

elastic domain [37, 65-67]. In fact, the contact force models described are only valid for 
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impact velocities lower than the propagation velocity of elastic waves across the bodies, 

i.e., ρ
−− ≤δ E5)( 10  . The quantity ρ

E , velocity of wave propagation, is the larger of two 

propagation velocities of the elastic deformation waves in the colliding bodies, where E 

is the Young modulus and r is the material mass density [68]. Therefore, impacts at 

higher velocities, exceeding the propagation velocity of the elastic deformation waves, 

are likely to dissipate energy in a form of permanent indentation. In addition, it is well 

known that the value of the coefficient of restitution depends on the impact velocity 

[69]. However, for relatively low or moderate impact velocities, the value of the 

coefficient of restitution does not vary in a significant manner and can be assumed to be 

constant, as it is the case of present work. The interested reader in the details on these 

issues is referred to the works by Shivaswamy and Lankarani [37], Minamoto and 

Kawamura [52] and Yigit et al. [53]. 

Figure 4 depicts the linear slider acceleration evolution when the linear Hooke 

force law is utilized. From the curve diagrams of Fig. 4, it is clear that this pure elastic 

nature of the contact force model produces very high peaks in terms of the slider 

accelerations when compared with the experimental data. In fact, the slider acceleration 

waveforms obtained from computational simulation are significantly different from 

those obtained experimentally, as the peak is 15 times greater. Moreover, it can also be 

observed that with this approach, there is no continuous or permanent contact between 

the journal and bearing surfaces, that is, there is a rebound after each impact. However, 

it should be noticed that, in general, there is a replicable response for each crank 

rotation. These observations are not surprising in the measure that this linear Hooke law 

is only valid for very low impact velocities and very elastic contacts [30]. 
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Fig. 4 Time history of the linear slider accelerations: (a) Experimental data; 

(b) Computational results when Hooke contact law is used 
 

 

In a similar manner, the outcomes from the Hertz and ESDU-78035 contact 

force models exhibit the same evolution, but the slider acceleration peaks are lower 

when compared with the Hooke’s law, as illustrated in Figs. 5 and 6. Again, the 

waveforms of the slider acceleration is different from the experimental data, and the 

acceleration appears to be imparted as a series of frequent, sharp, short-duration 

impacts. The peak slider acceleration for the Hertz and ESDU-78035 are, respectively, 

more than 6 and 2 times those obtained from experimental tests. This is not surprising 

since these two contact force models are still elastic in nature, but can be useful for low 

impact velocities. It should be noticed that when the ESDU-78035 contact force 

approach is utilized, the system’s behavior is not periodic in the measure that the slider 

acceleration plots are not repeatable for each crank rotation, as observed from Fig. 6. 

Taking into account the significant improvements in terms of the reduction of the 

acceleration peaks, it is reasonably that the inclusion of the damping terms to the 

contact approach will improve the performance of the model’s response in terms of the 

correlation between the experimental and computational results.  
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Fig. 5 Time history of the linear slider accelerations: (a) Experimental data; 

(b) Computational results when Hertz contact law is used 
 

 
Fig. 6 Time history of the linear slider accelerations: (a) Experimental data; 
(b) Computational results when ESDU-78035 contact approach law is used 
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considered, respectively. It should be noted that with these two formulations, the 

obtained results match reasonably well with the experimental data, in particular for the 

combined case utilizing combined damping term given by Eq. (7). This is not surprising 

since these two approaches include some damping in terms of the restitution coefficient, 

as Eq. (5) explicitly shows. Figure 7 clearly shows that the Lankarani and Nikravesh 

force model provides some significant improvements over the pure elastic force laws. 

This might be taken as an indicator that damping does indeed play a crucial role in these 

types of contact events. The predicted peak values are a little higher than the 

experimental ones. This fact can be associated with the punctual (sphere-to-sphere) 

nature of the contact geometry. This drawback is overcome by observing the plots of 

Fig. 8, in which the combined force approach and experimental data match quite well. It 

must be highlighted that the combined approach utilized the ESDU tribology-based 

rectangular contact idea together with the damping term proposed by Lankarani and 

Nikravesh [32]. 

 

 
Fig. 7 Time history of the linear slider accelerations: (a) Experimental data; 

(b) Computational results when Lankarani and Nikravesh contact law is used 
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Fig. 8 Time history of the linear slider accelerations: (a) Experimental data; 
(b) Computational results when the combined force contact model is used 
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based contact force model with the ad hoc damping provided results that reasonably 

matched experimental test results. Overall, it can be concluded that selection of the 

appropriate force model together with the dissipative term plays a crucial role in the 

dynamic behavior of multibody systems involving contact events. This issue is 

particularly relevant when the systems operate at low or moderate impact velocities and 

low coefficient of restitution. 
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