160 research outputs found

    Blood vessel density correlates with the effects of targeted intra-arterial carboplatin infusion with concurrent radiotherapy for squamous cell carcinomas of the oral cavity and oropharynx

    Get PDF
    Our aim was first to evaluate the association between blood vessel density (BVD) and free platinum concentration in experimentally induced tumours in rabbits. We also investigated the association between tumour BVD and the clinical response of patients who had undergone targeted carboplatin intra-arterial (i.a.) chemoradiotherapy. VX2 carcinoma cells were transplanted into 46 inbred female Japanese white rabbits. In the i.a. group, carboplatin was infused into the lingual artery, and in the intravenous (i.v.) group, carboplatin was infused through the auricular vein. In the clinical study, we evaluated 19 patients with squamous cell carcinomas of the oral cavity and oropharynx, who had undergone targeted carboplatin i.a. chemoradiotherapy and had been administered i.a. tegafur/uracil chemotherapy before surgery. We quantified angiogenesis in both studies. Increased BVD was associated with a higher free platinum concentration in the tumour region in the i.a. group of rabbits. In the clinical study, using multivariate logistic regression analysis, only the BVD was related independently to the treatment effect. Therefore, BVD is a valid predictor of the effects of i.a. targeted carboplatin chemotherapy and concurrent radiotherapy for treating human oral and oropharyngeal squamous cell carcinomas

    The incidence, aetiology and outcome of acute seizures in children admitted to a rural Kenyan district hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute seizures are a common cause of paediatric admissions to hospitals in resource poor countries and a risk factor for neurological and cognitive impairment and epilepsy. We determined the incidence, aetiological factors and the immediate outcome of seizures in a rural malaria endemic area in coastal Kenya.</p> <p>Methods</p> <p>We recruited all children with and without seizures, aged 0–13 years and admitted to Kilifi District hospital over 2 years from 1<sup>st </sup>December 2004 to 30<sup>th </sup>November 2006. Only incident admissions from a defined area were included. Patients with epilepsy were excluded. The population denominator, the number of children in the community on 30<sup>th </sup>November 2005 (study midpoint), was modelled from a census data.</p> <p>Results</p> <p>Seizures were reported in 900/4,921(18.3%) incident admissions and at least 98 had status epilepticus. The incidence of acute seizures in children 0–13 years was 425 (95%CI 386, 466) per 100,000/year and was 879 (95%CI 795, 968) per 100,000/year in children <5 years. This incidence data may however be an underestimate of the true incidence in the community. Over 80% of the seizures were associated with infections. Neonatal infections (28/43 [65.1%]) and falciparum malaria (476/821 [58.0%]) were the main diseases associated with seizures in neonates and in children six months or older respectively. Falciparum malaria was also the main illness (56/98 [57.1%]) associated with status epilepticus. Other illnesses associated with seizures included pyogenic meningitis, respiratory tract infections and gastroenteritis. Twenty-eight children (3.1%) with seizures died and 11 surviving children (1.3%) had gross neurological deficits on discharge. Status epilepticus, focal seizures, coma, metabolic acidosis, bacteraemia, and pyogenic meningitis were independently associated with mortality; while status epilepticus, hypoxic ischaemic encephalopathy and pyogenic meningitis were independently associated with neurological deficits on discharge.</p> <p>Conclusion</p> <p>There is a high incidence of acute seizures in children living in this malaria endemic area of Kenya. The most important causes are diseases that are preventable with available public health programs.</p

    Abnormal Dosage Compensation of Reporter Genes Driven by the Drosophila Glass Multiple Reporter (GMR) Enhancer-Promoter

    Get PDF
    In Drosophila melanogaster the male specific lethal (MSL) complex is required for upregulation of expression of most X-linked genes in males, thereby achieving X chromosome dosage compensation. The MSL complex is highly enriched across most active X-linked genes with a bias towards the 3′ end. Previous studies have shown that gene transcription facilitates MSL complex binding but the type of promoter did not appear to be important. We have made the surprising observation that genes driven by the glass multiple reporter (GMR) enhancer-promoter are not dosage compensated at X-linked sites. The GMR promoter is active in all cells in, and posterior to, the morphogenetic furrow of the developing eye disc. Using phiC31 integrase-mediated targeted integration, we measured expression of lacZ reporter genes driven by either the GMR or armadillo (arm) promoters at each of three X-linked sites. At all sites, the arm-lacZ reporter gene was dosage compensated but GMR-lacZ was not. We have investigated why GMR-driven genes are not dosage compensated. Earlier or constitutive expression of GMR-lacZ did not affect the level of compensation. Neither did proximity to a strong MSL binding site. However, replacement of the hsp70 minimal promoter with a minimal promoter from the X-linked 6-Phosphogluconate dehydrogenase gene did restore partial dosage compensation. Similarly, insertion of binding sites for the GAGA and DREF factors upstream of the GMR promoter led to significantly higher lacZ expression in males than females. GAGA and DREF have been implicated to play a role in dosage compensation. We conclude that the gene promoter can affect MSL complex-mediated upregulation and dosage compensation. Further, it appears that the nature of the basal promoter and the presence of binding sites for specific factors influence the ability of a gene promoter to respond to the MSL complex

    Children struggle beyond preschool-age in a continuous version of the ambiguous figures task

    Get PDF
    Children until the age of five are only able to reverse an ambiguous figure when they are informed about the second interpretation. In two experiments, we examined whether children’s difficulties would extend to a continuous version of the ambiguous figures task. Children (Experiment 1: 66 3- to 5-year olds; Experiment 2: 54 4- to 9-year olds) and adult controls saw line drawings of animals gradually morph—through well-known ambiguous figures—into other animals. Results show a relatively late developing ability to recognize the target animal, with difficulties extending beyond preschool-age. This delay can neither be explained with improvements in theory of mind, inhibitory control, nor individual differences in eye movements. Even the best achieving children only started to approach adult level performance at the age of 9, suggesting a fundamentally different processing style in children and adults

    Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure

    Get PDF
    During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t12 haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t12 haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility

    Functional Brain Networks Develop from a “Local to Distributed” Organization

    Get PDF
    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)

    Solar Coronal Plumes

    Get PDF
    Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL) images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV) and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore