195 research outputs found

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Maternal feeding practices and fussy eating in toddlerhood: A discordant twin analysis

    Get PDF
    Background: Parental feeding practices are thought to play a causal role in shaping a child's fussiness; however, a child-responsive model suggests that feeding practices may develop in response to a child's emerging appetitive characteristics. We used a novel twin study design to test the hypothesis that mothers vary their feeding practices for twin children who differ in their 'food fussiness', in support of a child-responsive model. Methods: Participants were mothers and their 16 month old twin children (n=2026) from Gemini, a British twin birth cohort of children born in 2007. Standardized psychometric measures of maternal 'pressure to eat', 'restriction' and 'instrumental feeding', as well as child 'food fussiness', were completed by mothers. Within-family analyses examined if twin-pair differences in 'food fussiness' were associated with differences in feeding practices using linear regression models. In a subset of twins (n=247 pairs) who were the most discordant (highest quartile) on 'food fussiness' (difference score≥.50), Paired Samples T-test were used to explore the magnitude of differences in feeding practices between twins. Between-family analyses used Complex Samples General Linear Models to examine associations between feeding practices and 'food fussiness'. Results: Within-pair differences in 'food fussiness' were associated with differential 'pressure to eat' and 'instrumental feeding' (ps<.001), but not with 'restriction'. In the subset of twins most discordant on 'food fussiness', mothers used more pressure (p<.001) and food rewards (p<.05) with the fussier twin. Between-family analyses indicated that 'pressure to eat' and 'instrumental feeding' were positively associated with 'food fussiness', while 'restriction' was negatively associated with 'food fussiness' (ps<.001). Conclusions: Mothers appear to subtly adjust their feeding practices according to their perceptions of their toddler's emerging fussy eating behavior. Specifically, the fussier toddler is pressured more than their less fussy co-twin, and is more likely to be offered food rewards. Guiding parents on how to respond to fussy eating may be an important aspect of promoting feeding practices that encourage food acceptance

    Unconstrained three-dimensional reaching in Rhesus monkeys

    Get PDF
    To better understand normative behavior for quantitative evaluation of motor recovery after injury, we studied arm movements by non-injured Rhesus monkeys during a food-retrieval task. While seated, monkeys reached, grasped, and retrieved food items. We recorded three-dimensional kinematics and muscle activity, and used inverse dynamics to calculate joint moments due to gravity, segmental interactions, and to the muscles and tissues of the arm. Endpoint paths showed curvature in three dimensions, suggesting that maintaining straight paths was not an important constraint. Joint moments were dominated by gravity. Generalized muscle and interaction moments were less than half of the gravitational moments. The relationships between shoulder and elbow resultant moments were linear during both reach and retrieval. Although both reach and retrieval required elbow flexor moments, an elbow extensor (triceps brachii) was active during both phases. Antagonistic muscles of both the elbow and hand were co-activated during reach and retrieval. Joint behavior could be described by lumped-parameter models analogous to torsional springs at the joints. Minor alterations to joint quasi-stiffness properties, aided by interaction moments, result in reciprocal movements that evolve under the influence of gravity. The strategies identified in monkeys to reach, grasp, and retrieve items will allow the quantification of prehension during recovery after a spinal cord injury and the effectiveness of therapeutic interventions

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions

    Get PDF
    Tidal turbines operate in a highly unsteady environment, which causes large-amplitude load fluctuations to the rotor. This can result in dynamic and fatigue failures. Hence, it is critical that the unsteady loads are accurately predicted. A rotor's blade can experience stall delay, load hysteresis and dynamic stall. Yet, the significance of these effects for a full-scale axial-flow turbine are unclear. To investigate, we develop a simple model for the unsteady hydrodynamics of the rotor and consider field measurements of the onset flow. We find that when the rotor operates in large, yet realistic wave conditions, that the load cycle is governed by the waves, and the power and blade bending moments oscillate by half of their mean values. While the flow remains attached near the blade tip, dynamic stall occurs near the blade root, resulting in a twofold overshoot of the local lift coefficient compared to the static value. At the optimal tip-speed ratio, the difference between the unsteady loads computed with our model and a simple quasi-steady approximation is small. However, below the optimal tip-speed ratio, dynamic stall may occur over most of the blade, and the maximum peak loads can be twice those predicted with a quasi-steady approximation

    Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions

    Get PDF
    Background: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases.[br/] Methodology/Principal Findings: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production - nitrification and denitrification - and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. [br/] Conclusions/Significance: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Presently, health costs associated with nitrate in drinking water are uncertain and not quantified. This limits proper evaluation of current policies and measures for solving or preventing nitrate pollution of drinking water resources. The cost for society associated with nitrate is also relevant for integrated assessment of EU nitrogen policies taking a perspective of welfare optimization. The overarching question is at which nitrogen mitigation level the social cost of measures, including their consequence for availability of food and energy, matches the social benefit of these measures for human health and biodiversity.</p> <p>Methods</p> <p>Epidemiological studies suggest colon cancer to be possibly associated with nitrate in drinking water. In this study risk increase for colon cancer is based on a case-control study for Iowa, which is extrapolated to assess the social cost for 11 EU member states by using data on cancer incidence, nitrogen leaching and drinking water supply in the EU. Health costs are provisionally compared with nitrate mitigation costs and social benefits of fertilizer use.</p> <p>Results</p> <p>For above median meat consumption the risk of colon cancer doubles when exposed to drinking water exceeding 25 mg/L of nitrate (NO<sub>3</sub>) for more than ten years. We estimate the associated increase of incidence of colon cancer from nitrate contamination of groundwater based drinking water in EU11 at 3%. This corresponds to a population-averaged health loss of 2.9 euro per capita or 0.7 euro per kg of nitrate-N leaching from fertilizer.</p> <p>Conclusions</p> <p>Our cost estimates indicate that current measures to prevent exceedance of 50 mg/L NO<sub>3 </sub>are probably beneficial for society and that a stricter nitrate limit and additional measures may be justified. The present assessment of social cost is uncertain because it considers only one type of cancer, it is based on one epidemiological study in Iowa, and involves various assumptions regarding exposure. Our results highlight the need for improved epidemiological studies.</p

    Cooling athletes with a spinal cord injury

    Get PDF
    Cooling strategies that help prevent a reduction in exercise capacity whilst exercising in the heat have received considerable research interest over the past 3 decades, especially in the lead up to a relatively hot Olympic and Paralympic Games. Progressing into the next Olympic/Paralympic cycle, the host, Rio de Janeiro, could again present an environmental challenge for competing athletes. Despite the interest and vast array of research into cooling strategies for the able-bodied athlete, less is known regarding the application of these cooling strategies in the thermoregulatory impaired spinal cord injured (SCI) athletic population. Individuals with a spinal cord injury (SCI) have a reduced afferent input to the thermoregulatory centre and a loss of both sweating capacity and vasomotor control below the level of the spinal cord lesion. The magnitude of this thermoregulatory impairment is proportional to the level of the lesion. For instance, individuals with high-level lesions (tetraplegia) are at a greater risk of heat illness than individuals with lower-level lesions (paraplegia) at a given exercise intensity. Therefore, cooling strategies may be highly beneficial in this population group, even in moderate ambient conditions (~21 °C). This review was undertaken to examine the scientific literature that addresses the application of cooling strategies in individuals with an SCI. Each method is discussed in regards to the practical issues associated with the method and the potential underlying mechanism. For instance, site-specific cooling would be more suitable for an athlete with an SCI than whole body water immersion, due to the practical difficulties of administering this method in this population group. From the studies reviewed, wearing an ice vest during intermittent sprint exercise has been shown to decrease thermal strain and improve performance. These garments have also been shown to be effective during exercise in the able-bodied. Drawing on additional findings from the able-bodied literature, the combination of methods used prior to and during exercise and/or during rest periods/half-time may increase the effectiveness of a strategy. However, due to the paucity of research involving athletes with an SCI, it is difficult to establish an optimal cooling strategy. Future studies are needed to ensure that research outcomes can be translated into meaningful performance enhancements by investigating cooling strategies under the constraints of actual competition. Cooling strategies that meet the demands of intermittent wheelchair sports need to be identified, with particular attention to the logistics of the sport

    Effects of Increased Nitrogen Deposition and Precipitation on Seed and Seedling Production of Potentilla tanacetifolia in a Temperate Steppe Ecosystem

    Get PDF
    The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change
    corecore