25 research outputs found

    Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boswellic acids mixture of triterpenic acids obtained from the oleo gum resin of <it>Boswellia serrata </it>and known for its effectiveness in the treatment of chronic inflammatory disease including peritumor edema. Boswellic acids have been extensively studied for a number of activities including anti inflammatory, antitumor, immunomodulatory, and inflammatory bowel diseases. The present study describes the antimicrobial activities of boswellic acid molecules against oral cavity pathogens. Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, mutation prevention frequency, postantibiotic effect (PAE) and biofilm susceptibility assay against oral cavity pathogens.</p> <p>Findings</p> <p>AKBA exhibited an inhibitory effect on all the oral cavity pathogens tested (MIC of 2-4 μg/ml). It exhibited concentration dependent killing of S<it>treptococcus mutans </it>ATCC 25175 up to 8 × MIC and also prevented the emergence of mutants of <it>S.mutans </it>ATCC 25175 at 8× MIC. AKBA demonstrated postantibiotic effect (PAE) of 5.7 ± 0.1 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by <it>S.mutans </it>and <it>Actinomyces viscosus </it>and also reduced the preformed biofilms by these bacteria.</p> <p>Conclusions</p> <p>AKBA can be useful compound for the development of antibacterial agent against oral pathogens and it has great potential for use in mouthwash for preventing and treating oral infections.</p

    Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation

    Get PDF
    PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed

    RNA metabolism is the primary target of formamide in vivo

    Get PDF
    The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes

    Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant

    Get PDF
    The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet

    Mitotic kinases as regulators of cell division and its checkpoints

    No full text
    Mitosis and cytokinesis are undoubtedly the most spectacular parts of the cell cycle. Errors in the choreography of these processes can lead to aneuploidy or genetic instability, fostering cell death or disease. Here, I give an overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission
    corecore