550 research outputs found

    A Boreing Night of Observations of the Upper Mesosphere and Lower Thermosphere Over the Andes Lidar Observatory

    Get PDF
    A very high-spatial resolution (∼21-23 m pixel at 85 km altitude) OH airglow imager at the Andes Lidar Observatory at Cerro Pach´on, Chile observed considerable ducted wave activity on the night of October 29-30, 2016. This instrument was collocated with a Na wind-temperature lidar that provided data revealing the occurrence of strong ducts. A large field of view OH and greenline airglow imager showed waves present over a vertical extent consistent with the altitudes of the ducting features identified in the lidar profiles. While waves that appeared to be ducted were seen in all imagers throughout the observation interval, the wave train seen in the OH images at earlier times had a distinct leading non-sinusoidal phase followed by several, lower-amplitude, more sinusoidal phases, suggesting a likely bore. The leading phase exhibited significant dissipation via small-scale secondary instabilities suggesting vortex rings that progressed rapidly to smaller scales and turbulence (the latter not fully resolved) thereafter. The motions of these small-scale features were consistent with their location in the duct at or below ∼83-84 km. Bore dissipation caused a momentum flux divergence and a local acceleration of the mean flow within the duct along the direction of the initial bore propagation. A number of these features are consistent with mesospheric bores observed or modeled in previous studies

    Kelvin-Helmholtz Billow Interactions and Instabilities In The Mesosphere Over the Andes Lidar Observatory: 1. Observations

    Get PDF
    A very high spatial resolution (∼25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind-temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin-Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987, https://doi.org/10.1029/ JC092iC05p05231; 2002, https://doi.org/10.1002/qj.200212858307) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high-resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020, https://doi.org/10.1029/2020JD033412) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows

    Ultrafast Pump-Push Photocurrent Spectroscopy of Organic Photoconversion Systems

    Get PDF
    Novel optical pump-push – photocurrent probe ultrafast spectroscopy experiments on organic photoconversion systems show that excessive excitation energy in such systems is not lost but used to reach delocalised states that act as the gateway for long-range charge separation. We also show that the developed experimental approach can be generalised to inorganic and hybrid photoconversion systems

    The Life Cycle of Instability Features Measured from the Andes Lidar Observatory Over Cerro Pachon on 24 March 2012

    Get PDF
    The Aerospace Corporation\u27s Nightglow Imager (ANI) observes nighttime OH emission (near 1.6 µm) every 2 s over an approximate 73¬∞ field of view. ANI had previously been used to study instability features seen over Maui. Here we describe observations of instabilities seen from 5 to 8 UT on 24 March 2012 over Cerro Pachon, Chile, and compare them with previous results from Maui, with theory, and with Direct Numerical Simulations (DNS). The atmosphere had reduced stability because of the large negative temperature gradients measured by a Na lidar. Thus, regions of dynamical and convective instabilities are expected to form, depending on the value of the Richardson number. Bright primary instabilities are formed with a horizontal wavelength near 9 km and showed the subsequent formation of secondary instabilities, rarely seen over Maui, consistent with the primaries being dynamical instabilities. The ratio of the primary to secondary horizontal wavelength was greater over Chile than over Maui. After dissipation of the instabilities, smaller-scale features appeared with sizes in the buoyancy subrange between 1.5 and 6 km. Their size spectra were consistent with the model of Weinstock (1978) if the turbulence is considered to be increasing. The DNS results produce secondary instabilities with sizes comparable to what is seen in the images although their spectra are somewhat steeper than is observed. However, the DNS results also show that after the complete decay of the primary features, scale sizes considerably smaller than 1 km are produced and these cannot be seen by the ANI instrument

    The effects of pioglitazone, a PPARγ receptor agonist, on the abuse liability of oxycodone among nondependent opioid users

    Get PDF
    Aims: Activation of PPARγ by pioglitazone (PIO) has shown some efficacy in attenuating addictive-like responses in laboratory animals. The ability of PIO to alter the effects of opioids in humans has not been characterized in a controlled laboratory setting. The proposed investigation sought to examine the effects of PIO on the subjective, analgesic, physiological and cognitive effects of oxycodone (OXY). Methods: During this investigation, nondependent prescription opioid abusers (N = 17 completers) were maintained for 2-3 weeks on ascending daily doses of PIO (0 mg, 15 mg, 45 mg) prior to completing a laboratory session assessing the aforementioned effects of OXY [using a within-session cumulative dosing procedure (0, 10, and 20 mg, cumulative dose = 30 mg)]. Results: OXY produced typical mu opioid agonist effects: miosis, decreased pain perception, and decreased respiratory rate. OXY also produced dose-dependent increases in positive subjective responses. Yet, ratings such as: drug "liking," "high," and "good drug effect," were not significantly altered as a function of PIO maintenance dose. Discussion: These data suggest that PIO may not be useful for reducing the abuse liability of OXY. These data were obtained with a sample of nondependent opioid users and therefore may not be applicable to dependent populations or to other opioids. Although PIO failed to alter the abuse liability of OXY, the interaction between glia and opioid receptors is not well understood so the possibility remains that medications that interact with glia in other ways may show more promise

    Lysosomal rupture induced by structurally distinct chitosans either promotes a type 1 IFN response or activates the inflammasome in macrophages

    Get PDF
    Chitosan is a family of glucosamine and N-acetyl glucosamine polysaccharides with poorly understood immune modulating properties. Here, functional U937 macrophage responses were analyzed in response to a novel library of twenty chitosans with controlled degree of deacetylation (DDA, 60-98%), molecular weight (1 to >100 kDa), and acetylation pattern (block vs. random). Specific chitosan preparations (10 or 190 kDa 80% block DDA and 3, 5, or 10 kDa 98% DDA) either induced macrophages to release CXCL10 and IL-1ra at 5-50 mug/mL, or activated the inflammasome to release IL-1beta and PGE2 at 50-150 mug/mL. Chitosan induction of these factors required lysosomal acidification. CXCL10 production was preceded by lysosomal rupture as shown by time-dependent co-localization of galectin-3 and chitosan and slowed autophagy flux, and specifically depended on IFN-beta paracrine activity and STAT-2 activation that could be suppressed by PGE2. Chitosan induced a type I IFN paracrine response or inflammasome response depending on the extent of lysosomal rupture and cytosolic foreign body invasion. This study identifies the structural motifs that lead to chitosan-driven cytokine responses in macrophages and indicates that lysosomal rupture is a key mechanism that determines the endogenous release of either IL-1ra or IL-1beta
    • …
    corecore