26 research outputs found
The Effect of Feeding Dried Distillers Grains Plus Solubles on Milk Production and Excretion of Urinary Purine Derivatives
Suplemento múltiplo com ionóforos para novilhos em pasto: consumo, fermentação ruminal e degradabilidade in situ
Produção e composição do leite de vacas em pastagem de capim-elefante (Pennisetum purpureum) suplementado com diferentes fontes de carboidratos
Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in Ge76. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in Ge76) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Qββ and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×1025 yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0-2.5+3.1 counts/(FWHM t yr)
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Nitrogen utilization, nutrient digestibility, and excretion of purine derivatives in dairy cattle consuming rations containing corn milling co-products
The objectives of this experiment were to determine the effects of feeding a combination of modified wet distillers grains with solubles (WDGS) and wet corn gluten feed (WCGF) on nutrient digestion, purine derivative excretion, and N utilization. Multiparous (n = 20) and primiparous (n = 20) cows were arranged in a replicated 5 × 5 Latin square with 21-d periods. Animals were fed one of 5 treatment diets during each period: 1) 0% co-products (control); 2) 15% WDGS (15WDGS); 3) 15% WCGF (15WCGF); 4) 7.5% WDGS and 7.5% WCGF (15MIX); and 5) 15% WDGS and 15% WCGF (30MIX; dry matter basis). A portion of forages, corn, and soy-based protein was replaced with WDGS, or WCGF, or both. Dry matter intake was greater for 15WDGS (25.1 kg/d) and 30MIX (25.5 kg/d) than for control (22.4 kg/d), 15WCGF (23.2 kg/d), or 15MIX (23.5 kg/d). Dry matter digestibility was greatest for 15WCGF and 30MIX (63.6 and 64.1%, respectively) and least for 15WDGS (59.8%), and neutral detergent fiber and N digestibility were greatest for 30MIX (50.7 and 68.6%, respectively) and lowest for 15WDGS (41.3 and 61.5%, respectively). Excretion of purine derivatives in urine was greater for co-product treatment diets than for control. Fecal N was greatest for 15WDGS compared with other treatment diets (311.0 vs. 263.3 g/d), whereas urinary N was greatest for 30MIX (330.0 g/d), intermediate for 15WCGF and 15MIX (319.3 and 320.5 g/d, respectively), and lowest for control and 15WDGS (308.5 and 312.2 g/d, respectively). Manure N (fecal + urinary N) was greatest for 15WDGS, intermediate for 15MIX and 30MIX, and lowest for control and 15WCGF. Treatment diets did not differ in 4% fat-corrected milk production. Compared with the ration containing WDGS, the ration with a 30% mixture of WDGS and WCGF improved nutrient digestibility and N utilization with reduced manure N excretion and increased N retention. Thus, it appears feeding WDGS and WCGF in combination reduces some of the negative effects of feeding WDGS alone
Soybean meal substitution with a yeast-derived microbial protein sourse in dairy cow diets.
The objective of this study was to examine the effects substituting soybean meal with a yeast-derived microbial protein (YMP) on rumen and blood metabolites, dry matter intake, and milk production of high-producing dairy cows. Sixteen Holstein cows (12 multiparous and 4 primiparous), 93 ± 37 DIM (mean ± SD) at the beginning of the experiment, were used in a 4 × 4 Latin square design with four 28-d periods. Cows were blocked by parity and production, with 1 square consisting of 4 animals fitted with rumen cannulas. Basal diets, formulated for 16.1% crude protein and 1.56 Mcal/kg of net energy for lactation, contained 40% corn silage, 20% alfalfa hay, and 40% concentrate mix. During each period, cows were fed 1 of 4 treatment diets corresponding to YMP (DEMP; Alltech Inc., Nicholasville, KY) concentrations of 0, 1.14, 2.28, and 3.41% DM. Soybean meal (44% CP) was replaced by YMP to attain isonitrogenous and isoenergetic diets. Dietary treatments had no effect on pH and on most ruminal volatile fatty acid concentrations, with the exception of isovalerate, which decreased linearly with the addition of YMP. Rumen ammonia concentration decreased linearly, whereas free amino acids, total amino acid nitrogen, and soluble proteins weighing more than 10 kDa showed a cubic response on rumen N fractionation. A quadratic response was observed in oligopeptides that weighed between 3 and 10 kDa and peptides under 3 kDa when expressed as percentages of total amino acids and total nitrogen. Although nonesterified fatty acid concentration in blood did not differ between treatments, β-hydroxybutyrate and plasma glucose increased linearly as YMP increased. Dry matter intake showed a cubic effect, where cows fed 1.14, and 3.41% YMP had the highest intake. Milk production was not affected by YMP, whereas a trend was observed for a quadratic increase for 4% fat-corrected milk and energy-corrected milk. Medium- and long-chain fatty acid concentrations in milk increased quadratically, which elicited similar effects on milk fat concentration and yield. Total solids percentage and yield, and milk urea nitrogen also showed quadratic effects as YMP increased in the diet. No effects were observed on feed efficiency, milk protein, and lactose percentage or yield. A complementary in vitro study demonstrated a quadratic tendency for apparent and true dry matter digestibility as YMP was added to the diet. It was concluded that the substitution of soybean meal with YMP increased the percentage of total solids in milk and tended to improve energy-corrected and fat-corrected milk production in high-producing dairy cows consuming high-forage diets
