652 research outputs found

    Flat bands as a route to high-temperature superconductivity in graphite

    Full text link
    Superconductivity is traditionally viewed as a low-temperature phenomenon. Within the BCS theory this is understood to result from the fact that the pairing of electrons takes place only close to the usually two-dimensional Fermi surface residing at a finite chemical potential. Because of this, the critical temperature is exponentially suppressed compared to the microscopic energy scales. On the other hand, pairing electrons around a dispersionless (flat) energy band leads to very strong superconductivity, with a mean-field critical temperature linearly proportional to the microscopic coupling constant. The prize to be paid is that flat bands can generally be generated only on surfaces and interfaces, where high-temperature superconductivity would show up. The flat-band character and the low dimensionality also mean that despite the high critical temperature such a superconducting state would be subject to strong fluctuations. Here we discuss the topological and non-topological flat bands discussed in different systems, and show that graphite is a good candidate for showing high-temperature flat-band interface superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of functionalized Graphite", 21 pages, 12 figure

    Chemotherapy with BCNU in recurrent glioma: Analysis of clinical outcome and side effects in chemotherapy-naïve patients

    Get PDF
    Background: To date, standardized strategies for the treatment of recurrent glioma are lacking. Chemotherapy with the alkylating agent BCNU (1,3-bis (2-chloroethyl)-1-nitroso-urea) is a therapeutic option even though its efficacy and safety, particularly the risk of pulmonary fibrosis, remains controversial. To address these issues, we performed a retrospective analysis on clinical outcome and side effects of BCNU-based chemotherapy in recurrent glioma. Methods: Survival data of 34 mostly chemotherapy-naïve glioblastoma patients treated with BCNU at 1st relapse were compared to 29 untreated control patients, employing a multiple Cox regression model which considered known prognostic factors including MGMT promoter hypermethylation. Additionally, medical records of 163 patients treated with BCNU for recurrent glioma WHO grade II to IV were retrospectively evaluated for BCNU-related side effects classified according to the National Cancer Institute Common Toxicity Criteria for Adverse Events (CTCAE) version 2.0. Results: In recurrent glioblastoma, multiple regression survival analysis revealed a significant benefit of BCNU-based chemotherapy on survival after relapse (p = 0.02; HR = 0.48; 95 % CI = 0.26–0.89) independent of known clinical and molecular prognostic factors. Exploratory analyses suggested that survival benefit was most pronounced in MGMT-hypermethylated, BCNU-treated patients. Moreover, BCNU was well tolerated by 46 % of the 163 patients analyzed for side effects; otherwise, predominantly mild side effects occurred (CTCAE I/II; 45 %). Severe side effects CTCAE III/IV were observed in 9 % of patients including severe hematotoxicity, thromboembolism, intracranial hemorrhage and injection site reaction requiring surgical intervention. One patient presented with a clinically apparent pulmonary fibrosis CTCAE IV requiring temporary mechanical ventilation. Conclusion: In this study, BCNU was rarely associated with severe side effects, particularly pulmonary toxicity, and, in case of recurrent glioblastoma, even conferred a favorable outcome. Therefore BCNU appears to be an appropriate alternative to other nitrosoureas although the efficacy against newer drugs needs further evaluation

    Suppression of circulating IgD+CD27+ memory B cells in infants living in a malaria-endemic region of Kenya

    Get PDF
    Background: Plasmodium falciparum infection leads to alterations in B cell subset distribution. During infancy, development of peripheral B cell subsets is also occurring. However, it is unknown if infants living a malaria endemic region have alterations in B cell subsets that is independent of an age effect. Methods: To evaluate the impact of exposure to P. falciparum on B cell development in infants, flow cytometry was used to analyse the distribution and phenotypic characteristic of B cell subsets in infant cohorts prospectively followed at 12, 18 and 24 months from two geographically proximate regions in western Kenya with divergent malaria exposure i.e. Kisumu (malaria-endemic, n = 24) and Nandi (unstable malaria transmission, n = 21). Results: There was significantly higher frequency and absolute cell numbers of CD19+ B cells in Kisumu relative to Nandi at 12(p = 0.0440), 18(p = 0.0210) and 24 months (p = 0.0493). No differences were observed between the infants from the two sites in frequencies of naïve B cells (IgD+CD27-) or classical memory B cells (IgD-CD27+). However, immature transitional B cells (CD19+CD10+CD34-) were higher in Kisumu relative to Nandi at all three ages. In contrast, the levels of non-class switched memory B cells (CD19+IgD+CD27+) were significantly lower overall in Kisumu relative to Nandi at significantly at 12 (p = 0.0144), 18 (p = 0.0013) and 24 months (p = 0.0129). Conclusions: These data suggest that infants living in malaria endemic regions have altered B cell subset distribution. Further studies are needed to understand the functional significance of these changes and long-term impact on ability of these infants to develop antibody responses to P. falciparum and heterologous infections

    Observation of an Exotic S=+1S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    Full text link
    In an exclusive measurement of the reaction γdK+Kpn\gamma d \to K^+ K^- p n, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1S=+1 is seen in the K+nK^+n invariant mass spectrum. The peak is at 1.542±0.0051.542\pm 0.005 GeV/c2^2 with a measured width of 0.021 GeV/c2^2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is 5.2±0.6σ5.2 \pm 0.6 \sigma. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1S=+1 baryon by other experimental groups.Comment: 5 pages, 5 figure

    Measurement of Beam-Spin Asymmetries for Deep Inelastic π+\pi^+ Electroproduction

    Full text link
    We report the first evidence for a non-zero beam-spin azimuthal asymmetry in the electroproduction of positive pions in the deep-inelastic region. Data have been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of the sinϕ\sin\phi modulation increases with the momentum of the pion relative to the virtual photon, zz, with an average amplitude of 0.038±0.005±0.0030.038 \pm 0.005 \pm 0.003 for 0.5<z<0.80.5 < z < 0.8 range.Comment: 5 pages, RevTEX4, 3 figures, 2 table

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for p(e,ep)πop(\vec{e},e'p)\pi^o in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} has been measured in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. Data for the p(e,ep)πop(\vec e,e'p)\pi^o reaction were taken at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. For the first time a complete angular distribution was measured, permitting the separation of different non-resonant amplitudes using a partial wave analysis. Comparison with previous beam asymmetry measurements at MAMI indicate a deviation from the predicted Q2Q^2 dependence of σLT\sigma_{LT^{\prime}} using recent phenomenological models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid Communications. Version 2 has revised Q^2 analysi

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR

    Review on Superconducting Materials

    Full text link
    Short review of the topical comprehension of the superconductor materials classes Cuprate High-Temperature Superconductors, other oxide superconductors, Iron-based Superconductors, Heavy-Fermion Superconductors, Nitride Superconductors, Organic and other Carbon-based Superconductors and Boride and Borocarbide Superconductors, featuring their present theoretical understanding and their aspects with respect to technical applications.Comment: A previous version of this article has been published in \" Applied Superconductivity: Handbook on Devices and Applications \", Wiley-VCH ISBN: 978-3-527-41209-9. The new extended and updated version will be published in \" Encyclopedia of Applied Physics \", Wiley-VC

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 3030^{\circ} and 150150^{\circ}. A possible signature for this transition is the onset of cross section s11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
    corecore