2,089 research outputs found

    The Cross-correlation of MgII Absorption and Galaxies in BOSS

    Full text link
    We present a measurement of the cross-correlation of MgII absorption and massive galaxies, using the DR11 main galaxy sample of the Baryon Oscillation Spectroscopic Survey of SDSS-III (CMASS galaxies), and the DR7 quasar spectra of SDSS-II. The cross-correlation is measured by stacking quasar absorption spectra shifted to the redshift of galaxies that are within a certain impact parameter bin of the quasar, after dividing by a quasar continuum model. This results in an average MgII equivalent width as a function of impact parameter from a galaxy, ranging from 50 kpc to more than 10 Mpc in proper units, which includes all MgII absorbers. We show that special care needs to be taken to use an unbiased quasar continuum estimator, to avoid systematic errors in the measurement of the mean stacked MgII equivalent width. The measured cross-correlation follows the expected shape of the galaxy correlation function, although measurement errors are large. We use the cross-correlation amplitude to derive the bias factor of MgII absorbers, finding bMgII = 2.33 \pm? 0.19, where the error accounts only for the statistical uncertainty in measuring the mean equivalent width. This bias factor is larger than that obtained in previous studies and may be affected by modeling uncertainties that we discuss, but if correct it suggests that MgII absorbers at redshift z \simeq 0:5 are spatially distributed on large scales similarly to the CMASS galaxies in BOSS. Keywords: galaxies: haloes, galaxies: formation, quasars: absorption lines, large-scale structure of universeComment: Accepted for publication to MNRAS. Accepted 2014 December 12. Received 2014 November 29; in original form 2014 February

    The Mean Metal-line Absorption Spectrum of DLAs in BOSS

    Full text link
    We study the mean absorption spectrum of the Damped Lyman alpha population at z2.6z\sim 2.6 by stacking normalized, rest-frame shifted spectra of 27000\sim 27\,000 DLAs from the DR12 of BOSS/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in 5 intervals of DLA hydrogen column density, 5 intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with NHIN_{\rm HI}, whereas for high-ionization lines the increase is much weaker. The mean metal line equivalent widths decrease by a factor 1.11.5\sim 1.1-1.5 from z2.1z\sim2.1 to z3.5z \sim 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to AlIII, SIII, SiIII, CIV, SiIV, NV and OVI. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species NI, ZnII, CII{}^{*}, FeIII, and SIV. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.Comment: Resubmitted after referee revision. Added evolution of metal-line equivalent widths with redshift (Section 5). Added assessment of result dependencies on sample and methodology. Comparison of relative abundances of DLAs vs Milky Way ISM and halo (Figure 16). Publicly available videos of composite quasar and DLA spectra realizations here: https://github.com/lluism

    Manganese(I)-Catalyzed H-P Bond Activation via Metal-Ligand Cooperation

    Get PDF
    Here we report that chiral Mn(I) complexes are capable of H-P bond activation. This activation mode enables a general method for the hydrophosphination of internal and terminal α,β-unsaturated nitriles. Metal-ligand cooperation, a strategy previously not considered for catalytic H-P bond activation, is at the base of the mechanistic action of the Mn(I)-based catalyst. Our computational studies support a stepwise mechanism for the hydrophosphination and provide insight into the origin of the enantioselectivity

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    Type species of genera in Aphididae (Hemiptera Sternorrhyncha) with two new generic synonymies

    Get PDF
    P. 65-68The aphidologist community attending the Seventh International Symposium on Aphids in Fremantle (Western Australia, 2005) entrusted to us the preparation of a Part of the List of Available Names in Zoology devoted to the aphid genus-group taxa names, and this to be presented at the subsequent aphid symposium. During the course of our work (Nieto Nafría et al. 2009), we checked each genus to make sure its type species designation conformed to the International Code of Zoological Nomenclature (International Commission on Zoological Nomenclature 1999) ―henceforth The Code and The Commission―, and that these designations were correctly represented in the literature, especially the two most recent taxonomic catalogues (Eastop & Hille Ris Lambers 1976; Remaudière & Remaudière 1997). Previous authors have used most of the procedures of type fixation enumerated in The Code, The Commission itself has used its Plenary Powers to fix six type species, and 11 genus-group names remain without types (Table 1). In the recent aphid taxonomic catalogues (Eastop & Hille Ris Lambers op. cit.; Remaudière & Remaudière op. cit.), we found three errors caused by mistakes propagated in the literature and two errors caused by incorrect application of Article 11 of The Code. We have also found that in the case of 11 names, the criteria of Article 70.3 of The Code were not met, and regardless, earlier editions of The Code did not allow type designations of that kind (see the last paragraph of the example in Article 70.3). This article corrects the five errors and conforms the 11 aphid type species designations to the nomenclatural standards of The Code.S

    Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth

    Get PDF
    Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.Fil: Katz, Maximiliano Javier. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Acevedo, Julieta Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Loenarz, Christoph. University of Oxford; Reino UnidoFil: Galagovsky, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Liu Yi, Phebee. University Of Oxford; Reino UnidoFil: Pérez, Marcelo. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Thalhammer, Armin. University of Oxford; Reino UnidoFil: Sekirnik, Rok. University Of Oxford; Reino UnidoFil: Ge, Wei. University of Oxford; Reino UnidoFil: Melani, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Thomas, Maria Gabriela. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Simonetta, Sergio Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Boccaccio, Graciela Lidia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Schofield, Christoper J. University of Oxford; Reino UnidoFil: Cockman, Matthew E. University of Oxford; Reino UnidoFil: Ratcliffe, Peter J. University of Oxford; Reino UnidoFil: Wappner, Pablo. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin

    The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3

    Get PDF
    Stellar archeology shows that massive elliptical galaxies today formed rapidly about ten billion years ago with star formation rates above several hundreds solar masses per year (M_sun/yr). Their progenitors are likely the sub-millimeter-bright galaxies (SMGs) at redshifts (z) greater than 2. While SMGs' mean molecular gas mass of 5x10^10 M_sun can explain the formation of typical elliptical galaxies, it is inadequate to form ellipticals that already have stellar masses above 2x10^11 M_sun at z ~ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive SMGs at z = 2.3. The system is currently forming stars at a tremendous rate of 2,000 M_sun/yr. With a star formation efficiency an order-of-magnitude greater than that of normal galaxies, it will quench the star formation by exhausting the gas reservoir in only ~200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of ~4x10^11 M_sun. Our observations show that gas-rich major galaxy mergers, concurrent with intense star formation, can form the most massive elliptical galaxies by z ~ 1.5.Comment: Appearing in Nature online on May 22 and in print on May 30. Submitted here is the accepted version (including the Supplementary Information), see nature.com for the final versio
    corecore