571 research outputs found

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use

    Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail

    Get PDF
    Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies

    A single amino acid substitution confers enhanced methylation activity of mammalian Dnmt3b on chromatin DNA

    Get PDF
    Dnmt3a and Dnmt3b are paralogous enzymes responsible for de novo DNA methylation but with distinguished biological functions. In mice, disruption of Dnmt3b but not Dnmt3a causes global DNA hypomethylation, especially in repetitive sequences, which comprise the large majority of methylated DNA in the genome. By measuring DNA methylation activity of Dnmt3a and Dnmt3b homologues from five species, we found that mammalian Dnmt3b possessed significantly higher methylation activity on chromatin DNA than Dnmt3a and non-mammalian Dnmt3b. Sequence comparison and mutagenesis experiments identified a single amino acid substitution (I662N) in mammalian Dnmt3b as being crucial for its high chromatin DNA methylation activity. Further mechanistic studies demonstrated this substitution markedly enhanced the binding of Dnmt3b to nucleosomes and hence increased the chromatin DNA methylation activity. Moreover, this substitution was crucial for Dnmt3b to efficiently methylate repetitive sequences, which increased dramatically in mammalian genomes. Consistent with our observation that Dnmt3b evolved more rapidly than Dnmt3a during the emergence of mammals, these results demonstrated that the I662N substitution in mammalian Dnmt3b conferred enhanced chromatin DNA methylation activity and contributed to functional adaptation in the epigenetic system

    The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar

    Get PDF
    Mechanical cues are essential signals regulating plant growth and development. In response to wind, trees develop a thigmomorphogenetic response characterized by a reduction in longitudinal growth, an increase in diameter growth, and changes in mechanical properties. The molecular mechanisms behind these processes are poorly understood. In poplar, PtaZFP2, a C2H2 transcription factor, is rapidly up-regulated after stem bending. To investigate the function of PtaZFP2, we analyzed PtaZFP2-overexpressing poplars (Populus tremula 9 Populus alba). To unravel the genes downstream PtaZFP2, a transcriptomic analysis was performed. PtaZFP2-overexpressing poplars showed longitudinal and cambial growth reductions together with an increase in the tangent and hardening plastic moduli. The regulation level of mechanoresponsive genes was much weaker after stem bending in PtaZFP2-overexpressing poplars than in wild-type plants, showing that PtaZFP2 negatively modulates plant responsiveness to mechanical stimulation. Microarray analysis revealed a high proportion of down-regulated genes in PtaZFP2-overexpressing poplars. Among these genes, several were also shown to be regulated by mechanical stimulation. Our results confirmed the important role of PtaZFP2 during plant acclimation to mechanical load, in particular through a negative control of plant molecular responsiveness. This desensitization process could modulate the amplitude and duration of the plant response during recurrent stimuli

    Creationism and Intelligent Design

    Get PDF
    Until recently, little attention has been paid in the school classroom to creationism and almost none to intelligent design. However, creationism and intelligent design appear to be on the increase and there are indications that there are more countries in which schools are becoming battlegrounds over them. I begin by examining whether creationism and intelligent design are controversial issues, drawing on Robert Dearden’s epistemic criterion of the controversial and more recent responses to and defences of this. I then examine whether the notion of ‘worldviews’ in the context of creationism is a useful one by considering the film March of the Penguins. I conclude that the ‘worldviews’ perspective on creationism is useful for two reasons: first, it indicates the difficulty of using the criterion of reason to decide whether an issue is controversial or not; secondly, it suggests that standard ways of addressing the diversity of student views in a science classroom may be inadequate. I close by examining the implications of this view for teaching in science lessons and elsewhere, for example in religious education lessons and at primary level where subject divisions cannot be made in so clear-cut a manner

    Challenges in supporting lay carers of patients at the end of life: results from focus group discussions with primary healthcare providers

    Get PDF
    Background: Family caregivers (FCGs) of patients at the end of life (EoL) cared for at home receive support from professional and non-professional care providers. Healthcare providers in general practice play an important role as they coordinate care and establish contacts between the parties concerned. To identify potential intervention targets, this study deals with the challenges healthcare providers in general practice face in EoL care situations including patients, caregivers and networks. Methods: Focus group discussions with general practice teams in Germany were conducted to identify barriers to and enablers of an optimal support for family caregivers. Focus group discussions were analysed using content analysis. Results: Nineteen providers from 11 general practices took part in 4 focus group discussions. Participants identified challenges in communication with patients, caregivers and within the professional network. Communication with patients and caregivers focused on non-verbal messages, communicating at an appropriate time and perceiving patient and caregiver as a unit of care. Practice teams perceive themselves as an important part of the healthcare network, but also report difficulties in communication and cooperation with other healthcare providers. Conclusion: Healthcare providers in general practice identified relational challenges in daily primary palliative care with potential implications for EoL care. Communication and collaboration with patients, caregivers and among healthcare providers give opportunities for improving palliative care with a focus on the patient-caregiver dyad. It is insufficient to demand a (professional) support network; existing structures need to be recognized and included into the care

    Mitochondria of the Yeasts Saccharomyces cerevisiae and Kluyveromyces lactis Contain Nuclear rDNA-Encoded Proteins

    Get PDF
    In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-Cout topology. Plasmid-versions of 5′ end or 3′ end truncated TAR1 ORF were used to demonstrate that neither the N-terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein. Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 5′ flanking regions of TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 5′ and 3′ ends probably reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA repeats

    A modeling and simulation study of siderophore mediated antagonism in dual-species biofilms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several bacterial species possess chelation mechanisms that allow them to scavenge iron from the environment under conditions of limitation. To this end they produce siderophores that bind the iron and make it available to the cells later on, while rendering it unavailable to other organisms. The phenomenon of siderophore mediated antagonism has been studied to some extent for suspended populations where it was found that the chelation ability provides a growth advantage over species that do not have this possibility. However, most bacteria live in biofilm communities. In particular <it>Pseudomonas fluorescens </it>and <it>Pseudomonas putida</it>, the species that have been used in most experimental studies of the phenomenon, are known to be prolific biofilm formers, but only very few experimental studies of iron chelation have been published to date for the biofilm setting. We address this question in the present study.</p> <p>Methods</p> <p>Based on a previously introduced model of iron chelation and an existing model of biofilm growth we formulate a model for iron chelation and competition in dual species biofilms. This leads to a highly nonlinear system of partial differential equations which is studied in computer simulation experiments.</p> <p>Conclusions</p> <p>(i) Siderophore production can give a growth advantage also in the biofilm setting, (ii) diffusion facilitates and emphasizes this growth advantage, (iii) the magnitude of the growth advantage can also depend on the initial inoculation of the substratum, (iv) a new mass transfer boundary condition was derived that allows to a priori control the expect the expected average thickness of the biofilm in terms of the model parameters.</p
    corecore