85 research outputs found

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035

    Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results

    Get PDF
    Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor. © 2014 Biton et al

    Interplay of Protein and DNA Structure Revealed in Simulations of the lac Operon

    Get PDF
    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information. © 2013 Czapla et al

    HDG-NEFEM with Degree Adaptivity for Stokes Flows

    Get PDF
    This paper presents the first degree adaptive procedure able to directly use the geometry given by a CAD model. The technique uses a hybridisable discontinuous Galerkin discretisation combined with a NURBS-enhanced rationale, completely removing the uncertainty induced by a polynomial approximation of curved boundaries that is common within an isoparametric approach. The technique is compared against two strategies to perform degree adaptivity currently in use. This paper demonstrates, for the first time, that the most extended technique for degree adaptivity can easily lead to a non-reliable error estimator if no communication with CAD software is introduced whereas if the communication with the CAD is done, it results in a substantial computing time. The proposed technique encapsulates the CAD model in the simulation and is able to produce reliable error estimators irrespectively of the initial mesh used to start the adaptive process. Several numerical examples confirm the findings and demonstrate the superiority of the proposed technique. The paper also proposes a novel idea to test the implementation of high-order solvers where different degrees of approximation are used in different elements

    Influence of Reoperations on Long-Term Quality of Life After Restrictive Procedures: A Prospective Study

    Get PDF
    Quality of life improves after bariatric surgery. However, long-term results and the influence of reoperations are not well known. A prospective quality of life assessment before, 1 and 7 years after laparoscopic adjustable gastric banding (LAGB) and vertical banded gastroplasty (VBG) was performed in order to determine the influence of reoperations during follow-up. One hundred patients were included in the study. Fifty patients underwent VBG and 50 LAGB. Patients completed the quality of life questionnaires prior to surgery and two times during follow-up. Health-related quality of life (HRQoL) questionnaires included the Nottingham Health Profile I and II and the Sickness Impact Profile 68. Follow-up was 84% with a mean duration of 84 months (7 years). During follow-up, 65% of VBG patients underwent conversion to Roux-en-Y gastric bypass while 44% of LAGB patients underwent a reoperation or conversion. One year after the procedure, nearly all quality-of-life parameters significantly improved. After 7 years, the Nottingham Health Profile (NHP)-I domain “physical ability”, the NHP-II and the SIP-68 domains “mobility control”, “social behavior”, and “mobility range” were still significantly improved in both groups. The domains “emotional reaction”, “social isolation” (NHP-I), and “emotional stability” (SIP-68) remained significantly improved in the VBG group while this was true for the domain “energy level” (NHP-I) in the LAGB group. Both the type of procedure and reoperations during follow-up were not of significant influence on the HRQoL results. Weight loss and decrease in comorbidities were the only significant factors influencing quality of life. Restrictive bariatric surgery improves quality of life. Although results are most impressive 1 year after surgery, the improvement remains significant after long-term follow-up. Postoperative quality of life is mainly dependent on weight loss and decrease in comorbidities and not on the type of procedure or surgical complications

    Structure and Age Jointly Influence Rates of Protein Evolution

    Get PDF
    What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group – including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link
    corecore