775 research outputs found

    Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification.

    Get PDF
    BACKGROUND: For expression profiling to have a practical impact in the management of immune-related disease it is essential that it can be applied to peripheral blood cells. Early studies have used total peripheral blood mononuclear cells, and as a consequence the majority of the disease-related signatures identified have simply reflected differences in the relative abundance of individual cell types between patients and controls. To identify cell-specific changes in transcription it would be necessary to profile purified leucocyte subsets. RESULTS: We have used sequential rounds of positive selection to isolate CD4 and CD8 T cells, CD19 B cells, CD14 monocytes and CD16 neutrophils for microarray analysis from a single blood sample. We compared gene expression in cells isolated in parallel using either positive or negative selection and demonstrate that there are no significant consistent changes due to positive selection, and that the far inferior results obtained by negative selection are largely due to reduced purity. Finally, we demonstrate that storing cells prior to separation leads to profound changes in expression, predominantly in cells of the myeloid lineage. CONCLUSION: Leukocyte subsets should be prepared for microarray analysis by rapid positive selection.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis.

    Get PDF
    BACKGROUND: The genetic contribution to the aetiology of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is not well defined. Across different autoimmune diseases some genes with immunomodulatory roles, such as PTPN22, are frequently associated with multiple diseases, whereas specific HLA associations, such as HLA-B27, tend to be disease restricted. We studied ten candidate loci on the basis of their immunoregulatory role and prior associations with type 1 diabetes (T1D). These included PTPN22, CTLA4 and CD226, which have previously been associated with AAV. METHODS: We genotyped the following 11 SNPs, from 10 loci, in 641 AAV patients using TaqMan genotyping: rs2476601 in PTPN22, rs1990760 in IFIH1, rs3087243 in CTLA4, rs2069763 in IL2, rs10877012 in CYP27B1, rs2292239 in ERBB3, rs3184504 in SH2B3, rs12708716 in CLEC16A, rs1893217 and rs478582 in PTPN2 and rs763361 in CD226. Where possible, we performed a meta-analysis with previous analyses. RESULTS: Both CTLA4 rs3087243 and PTPN22 rs2476601 showed association with AAV, P = 6.4 x 10-3 and P = 1.4 x 10-4 respectively. The minor allele (A) of CTLA4 rs3087243 is protective (odds ratio = 0.84), whereas the minor allele (A) of PTPN22 rs2476601 confers susceptibility (odds ratio = 1.40). These results confirmed previously described associations with AAV. After meta-analysis, the PTPN22 rs2476601 association was further strengthened (combined P = 4.2 x 10-7, odds ratio of 1.48 for the A allele). The other 9 SNPs, including rs763361 in CD226, showed no association with AAV. CONCLUSION: Our study of T1D associated SNPs in AAV has confirmed CTLA4 and PTPN22 as susceptibility loci in AAV. These genes encode two key regulators of the immune response and are associated with many autoimmune diseases, including T1D, autoimmune thyroid disease, celiac disease, rheumatoid arthritis, and now AAV

    Light sheet microscopy with acoustic sample confinement

    Get PDF
    Contactless sample confinement would enable a whole host of new studies in developmental biology and neuroscience, in particular, when combined with long-term, wide-field optical imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap for sample confinement in light sheet microscopy. Our approach allows the integration of real-time environmentally controlled experiments with wide-field low photo-toxic imaging, which we demonstrate on a variety of marine animal embryos and larvae. To illustrate the key advantages of our approach, we provide quantitative data for the dynamic response of the heartbeat of zebrafish larvae to verapamil and norepinephrine, which are known to affect cardiovascular function. Optical flow analysis allows us to explore the cardiac cycle of the zebrafish and determine the changes in contractile volume within the heart. Overcoming the restrictions of sample immobilisation and mounting can open up a broad range of studies, with real-time drug-based assays and biomechanical analyses

    Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network.

    Get PDF
    BACKGROUND: Tumour necrosis factor (TNF) superfamily cytokines and their receptors regulate diverse immune system functions through a common set of signalling pathways. Genetic variants in and expression of individual TNF superfamily cytokines, receptors and signalling proteins have been associated with autoimmune and inflammatory diseases, but their interconnected biology has been largely unexplored. METHODS: We took a hypothesis-driven approach using available genome-wide datasets to identify genetic variants regulating gene expression in the TNF superfamily cytokine signalling network and the association of these variants with autoimmune and autoinflammatory disease. Using paired gene expression and genetic data, we identified genetic variants associated with gene expression, expression quantitative trait loci (eQTLs), in four peripheral blood cell subsets. We then examined whether eQTLs were dependent on gene expression level or the presence of active enhancer chromatin marks. Using these eQTLs as genetic markers of the TNF superfamily signalling network, we performed targeted gene set association analysis in eight autoimmune and autoinflammatory disease genome-wide association studies. RESULTS: Comparison of TNF superfamily network gene expression and regulatory variants across four leucocyte subsets revealed patterns that differed between cell types. eQTLs for genes in this network were not dependent on absolute gene expression levels and were not enriched for chromatin marks of active enhancers. By examining autoimmune disease risk variants among our eQTLs, we found that risk alleles can be associated with either increased or decreased expression of co-stimulatory TNF superfamily cytokines, receptors or downstream signalling molecules. Gene set disease association analysis revealed that eQTLs for genes in the TNF superfamily pathway were associated with six of the eight autoimmune and autoinflammatory diseases examined, demonstrating associations beyond single genome-wide significant hits. CONCLUSIONS: This systematic analysis of the influence of regulatory genetic variants in the TNF superfamily network reveals widespread and diverse roles for these cytokines in susceptibility to a number of immune-mediated diseases.The Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Library of Medicine of the US National Institutes of Health (Intramural Research Program) , Wellcome Trust (080327/Z/06/Z, 087007/Z/08/Z, 094227/Z/10/Z, Clinical PhD Programme, 079895, 076113 and 085475) , Medical Research Council (G0400929) , National Institute for Health Research , National Institutes of Health (Oxford-Cambridge Scholars Program) , Istanbul University Research Fund and UK Behcet’s Syndrome Society.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13073-016-0329-

    Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases.This research was funded by a Wellcome Trust Clinical PhD Programme Fellowship (JEP), the NIH-Oxford-Cambridge Scholars Program (ACR), Wellcome Trust Grant 083650/Z/07/Z and MRC Grant MR/L19027/1 (KGCS), and the National Institute for Health Research Cambridge Biomedical Research Centre. KGCS is a National Institute for Health Research Senior Investigator. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Peripheral Immune Cell Populations Associated with Cognitive Deficits and Negative Symptoms of Treatment-Resistant Schizophrenia.

    Get PDF
    BACKGROUND: Hypothetically, psychotic disorders could be caused or conditioned by immunological mechanisms. If so, one might expect there to be peripheral immune system phenotypes that are measurable in blood cells as biomarkers of psychotic states. METHODS: We used multi-parameter flow cytometry of venous blood to quantify and determine the activation state of 73 immune cell subsets for 18 patients with chronic schizophrenia (17 treated with clozapine), and 18 healthy volunteers matched for age, sex, BMI and smoking. We used multivariate methods (partial least squares) to reduce dimensionality and define populations of differentially co-expressed cell counts in the cases compared to controls. RESULTS: Schizophrenia cases had increased relative numbers of NK cells, naïve B cells, CXCR5+ memory T cells and classical monocytes; and decreased numbers of dendritic cells (DC), HLA-DR+ regulatory T-cells (Tregs), and CD4+ memory T cells. Likewise, within the patient group, more severe negative and cognitive symptoms were associated with decreased relative numbers of dendritic cells, HLA-DR+ Tregs, and CD4+ memory T cells. Motivated by the importance of central nervous system dopamine signalling for psychosis, we measured dopamine receptor gene expression in separated CD4+ cells. Expression of the dopamine D3 (DRD3) receptor was significantly increased in clozapine-treated schizophrenia and covaried significantly with differentiated T cell classes in the CD4+ lineage. CONCLUSIONS: Peripheral immune cell populations and dopaminergic signalling are disrupted in clozapine-treated schizophrenia. Immuno-phenotypes may provide peripherally accessible and mechanistically specific biomarkers of residual cognitive and negative symptoms in this treatment-resistant subgroup of patients

    Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease.

    Get PDF
    Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide association studies have identified over 200 genetic loci associated with risk for IBD, but the functional mechanisms of most of these genetic variants remain unknown. Polymorphisms at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of murine models of inflammation including models of IBD, TNFSF15 promotes immunopathology by signaling through its receptor DR3. Such evidence has led to the hypothesis that expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast, here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expression of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients. This association persists under various stimulation conditions at both the RNA and protein levels and is maintained after macrophage differentiation. Utilizing a "recall-by-genotype" bioresource for allele-specific expression measurements in a functional fine-mapping assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory region upstream of the gene. Through a T cell costimulation assay, we demonstrate that genetically regulated TNFSF15 has functional relevance. These findings indicate that genetically enhanced expression of TNFSF15 in specific cell types may confer protection against the development of IBD

    Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    Get PDF
    BACKGROUND: Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. RESULTS: Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. CONCLUSIONS: Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently
    corecore