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Abstract

Background: Although numerous investigations have compared gene expression microarray platforms, preprocessing
methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of
studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek
to identify subtle differences between samples with variable background noise, a scenario poorly represented by
constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in
real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid
measurement enables counting of individual RNA molecules without amplification and, for the first time, permits
such a study.

Results: Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression
values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected
genes. We found that gene measurements across samples correlated well between the two platforms, particularly for
high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low
variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this “gold-standard”
comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent,
by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across
tissues.

Conclusions: Microarray measurements generally correlate with relative RNA molecule counts within optimal
ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge
microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in
each dataset independently.
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Background
Over the last decade, gene expression microarrays have
become a common tool for examining gene transcript
levels in hypothesis-free investigations. Microarray data
is used for a wide variety of analyses, such as unsuper-
vised clustering, classification, differential expression ana-
lysis, and expression quantitative trait loci mapping (as
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reviewed in [1]). These studies aim to differentiate sub-
tle changes in relevant features from other biological
and technical variation. Sample preparation for gene
expression microarray requires one or more transcrip-
tional steps, followed by labelling, hybridization, and
intensity measurement [2]. At each step, technical vari-
ations and accompanying biases are introduced.
Microarray data preprocessing and batch correction

are important strategies for minimizing such confound-
ing. Preprocessing consists of three steps: background
correction, normalization, and summarization; and the
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choice of methods for these steps can dramatically
change experiment results [3]. Preprocessing algorithms
must contend with differing probe hybridization efficien-
cies that result in greater inter-probe than inter-sample
variability, probe intensity variances that change with in-
tensity levels, and inter-sample technical error. In com-
parative studies with spike-in and dilution datasets [4-7],
quantile normalization has performed consistently well,
and thus robust multi-array average (RMA), using a glo-
bal background correction, quantile normalization, and a
linear model fit by median polish for probe summarization
[8], has become a popular method for single-color micro-
array preprocessing. Even after normalization, variation
in processing technician, location and time can result
in probe-specific batch effects (as reviewed in [9]). Many al-
gorithms attempt to normalize between batches, some per-
forming location-scale adjustments based on known batch
delineations, and others using global matrix factorization
under the assumption that technical effects will outweigh
biological effects (as comprehensively surveyed in [10]).
Comparisons of batch effect removal methods [11,12] have
found the location-scale adjustment empirical Bayesian
method ComBat [13] to be robust, particularly when the
study does not include multiple platforms or tissue-types,
and when cross-batch reference samples are unavailable
[12]. ComBat borrows information across genes with simi-
lar within-batch expression profiles to correct batch effects
while preserving biological covariates, allowing good per-
formance even with small sample sizes [13].
These data processing methods enable comparisons of

individual genes between samples, but they leave direct
interpretation of the normalized values somewhat am-
biguous. This is particularly problematic for genes with
low log-transformed expression values, where it can be
difficult to differentiate true expression from background
noise. After quantile normalization there is no direct cal-
culation of the real expression difference indicated by a
log-fold-change in microarray expression values. Com-
mon validation technologies, such as quantitative poly-
merase chain reaction (qPCR, reviewed in [14]) and
multiplex branched DNA assay [15], also introduce noise
through transcript or signal amplification and analog
detection: qPCR measures real-time changes in the level
of targeted transcripts during amplification through fluor-
escence changes and extrapolates their relative concentra-
tions, while branched DNA assays employ a forked
hybridization detection scheme, amplifying reporter fluor-
escence of hybridized probes for signal detection. In
addition, although many biological studies use qPCR for
validation of significant findings (as sampled by [16]), they
examine a limited number of genes selected for specific
expression characteristics and thereby fail to provide a
global representation from which microarray data proper-
ties might be discerned.
Previous studies with spike-in and dilution datasets
[5,6,17,18] have demonstrated compression of micro-
array values at high and low levels of expression. How-
ever, a number of studies (summarized by [19]) have
raised concerns that spike-in and dilution datasets create
highly-controlled background noise and are therefore un-
likely to reflect the differing levels of cross-hybridizing
molecules within real biological samples [20]. In addition,
these constructed “truth” samples often contain large tar-
get gene variances that may not represent the subtle
changes examined in certain experimental settings. Several
studies have used samples from biological tissue to com-
pare multiple microarray platforms with other measure-
ment technologies, either mixing RNA from two tissues
at known ratios [21] or harvesting RNA in stimulated
and unstimulated conditions [22,23]. However, these
datasets have dramatic target gene variances, the stud-
ies compare microarray measurements with those from
PCR- and branched-DNA-based technologies that may
introduce bias in amplification or detection steps, and
their analyses mainly address differential expression
discovery rather than global properties of the micro-
array. To our knowledge, no study has made a systematic
examination of microarray signal detection accuracy and
precision with diverse biological samples in reference to
an amplification-free, digital RNA measurement.
Here we have used a count-based transcript detection

technology to address some of the questions raised above,
comparing measurements from the Affymetrix Human
Gene 1.1 ST microarray with those from the NanoString
Technologies nCounter Analysis System [24]. In contrast
to qPCR and branched DNA assays, the nCounter Ana-
lysis System directly enumerates specific RNA molecules
by dual probe hybridization, requiring amplification of
neither RNA nor signal. To avoid hybridization and fluor-
escence scale biases, nCounter reactions are carried out
with a great excess of transcript-specific probes before
purification, and measurements are made on a digital
instead of analog scale. Additionally, because it does
not require transcription, the nCounter system protocol
never heats samples sufficiently to denature genomic
DNA, avoiding contamination from genomic DNA
hybridization to oligonucleotide probes (a noted source
of noise for qPCR [25]). Finally, nCounter data has re-
cently been shown to be highly robust to different
normalization methods [26], providing reassurance that
our gold-standard does not suffer computational pro-
cessing biases. Thus, we interpret ratios of test and
control gene counts from the nCounter as true mea-
sures of the relative expression of these genes in our
samples. In this study, we compared nCounter with
microarray expression measurements of an experimen-
tal dataset composed of leukocyte subset RNA from
healthy controls and patients with either anti-neutrophil-
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cytoplasmic-antibody-associated vasculitis (AAV) or in-
flammatory bowel disease (IBD) to exemplify the level
of biological variation likely to be encountered in
microarray experiments. Our analyses provide a better
understanding of how preprocessed microarray results
reflect RNA levels in diverse biological samples, trans-
lating microarray expression value differences into
molecular changes between samples, and highlighting
tissue-specific noise properties.

Methods
RNA samples
This study was approved by the Cambridgeshire 3 Re-
search Ethics Committee (08/H0306/21) and all indi-
viduals provided written informed consent. Samples
were from healthy controls and individuals with active,
untreated disease with the following diagnoses: IBD,
specifically Crohn’s disease (CD) and ulcerative colitis
(UC); and AAV, specifically granulomatosis with poly-
angiitis (GPA) and microscopic polyangiitis (MPA).
Whole blood was collected and separated into periph-
eral blood leukocyte subsets as previously described
[27-29]. Briefly, whole blood was passed over a Histo-
paque 1077 (Sigma-Aldrich) gradient. Red blood cells
from the granulocyte-red-blood-cell pellet were lysed in
a buffer of 155 mM ammonium chloride, 12 mM so-
dium bicarbonate, and 100 mM EDTA, and CD16+
neutrophils were separated by magnetic bead-based
positive selection (Miltenyi Biotec). Peripheral blood
mononuclear cells were split into two fractions for
positive selection (Miltenyi Biotec) of CD14+ mono-
cytes and CD19+ B cells. Negative fractions from the
CD14+ and CD19+ selections were then used in a sec-
ond round of positive selection for CD4+ T cells and
CD8+ T cells (Miltenyi Biotec), respectively. RNA was
extracted with the RNEasy Mini or AllPrep DNA/RNA
Mini kit (Qiagen), following the manufacturer’s proto-
cols. This study uses the CD16+ neutrophil, CD14+
monocyte and CD4+ T cell subsets from this dataset,
referred to as the CD16, CD14 and CD4 datasets,
respectively.

Microarray
Aliquots of 200 ng total RNA were amplified and la-
belled for Human Gene 1.1 ST 96-Array (Affymetrix)
using the Ambion WT Expression Kit and GeneChip
WT Terminal Labeling and Controls Kit (Affymetrix),
according to the manufacturer’s protocols. Samples were
run on a GeneTitan Multi-Channel (MC) Instrument
(Affymetrix) as part of a larger dataset acquired over
multiple years. For comparison with nCounter data, we
selected only batches with at least 10 samples from the
desired cohorts covering at least two different diagnoses
to ensure batch correction was resistant to outliers and
confounding structure. Microarray data for samples used
in the nCounter comparison have been deposited in
ArrayExpress with Accession Number E-MTAB-2452.

Microarray data processing
Gene expression microarrays were filtered for sex dis-
cordance and global dimness before data processing.
Because the robustness of microarray normalization
improves with the number of samples included, arrays
were normalized in large, cell-type-specific batches, in-
cluding all available samples from the selected batches
with diagnoses tested in this study (See Additional
file 1 for a tabulated summary of arrays included
in this processing). Samples were preprocessed with
RMA using the oligo Bioconductor package [30] with
pd.hugene.1.1.st.v1 [31] annotation. Batch correction
was performed using the ComBat function of the sva
Bioconductor package [32] specifying diagnosis, sex,
and age as covariates to avoid removal of biological dif-
ferences. Quality control was performed with the array-
QualityMetrics Bioconductor package [33].

nCounter control gene choice
Control genes for the nCounter Analysis System were
chosen for each cell type on the basis of consistent ex-
pression across samples in the large, cell-type-specific
microarray datasets described above. RMA-preprocessed
datasets were separated by batch, and the variance of
each gene calculated across all samples. Gene vari-
ances were then averaged across batches. Examining
average variance versus mean expression revealed low
variance at very high expression levels, suggesting
array saturation or preprocessing compression effects
(see Additional file 2). In order to select control genes
that were well-expressed but not completely saturated,
we filtered for genes with mean microarray expression
values between 8 and 12 (see Additional file 2 for
variance-expression relationship). These genes were
then sorted by average within-batch variance, and con-
trol genes were chosen from the 2% with the lowest
variance based on functional annotation suggesting
stable, high expression in leukocytes (see Additional
file 3). The use of two control genes per dataset was
modelled after Reis et al. [34].

nCounter
RNA was prepared for and run on the nCounter Ana-
lysis System (NanoString Technologies), according to
the manufacturer’s protocol in a total of 6 runs over
8 days. To test for RNA degradation, several sentinel
samples from each cell-type-specific dataset were exam-
ined by 2100 Bioanalyzer (Agilent Technologies, Inc) ac-
cording to the manufacturer’s protocol. All sentinel
samples were confirmed to be of good quality with
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RIN ≥ 9.5. One sample was duplicated in a separate
nCounter run to evaluate reproducibility and run-
specific effects (see Additional file 4). RNA was loaded
at 100 ng per sample with the exception of one sample
with low RNA yield; this was run at 59 ng and did not
result in a low-count quality control flag. All hybridiza-
tions were 17 hours long, and all counts were gathered
by scanning on HIGH mode for 280 fields of view per
sample.

nCounter data processing
No nCounter samples were flagged by nSolverAnalysis-
Software (NanoString Technologies) for quality control.
nCounter data was normalized for hybridization and
counting efficiency in cell-type specific groups. Each
sample was multiplicatively normalized to have the same
geometric mean of nCounter-provided positive control
probe counts. No normalization factors were outside the
NanoString-recommended range of 0.3-3. Thresholds to
identify expressed genes from background noise were
then calculated as the median of the maxima of the
negative control probe measurements for each cell type.

Selection of microarray probesets for comparison
between platforms
Microarray probesets mapping to genes measured by the
nCounter Analysis System were identified by Affymetrix
GeneChip Human Gene ST Arrays Probeset Annota-
tions Release 33.2. Where multiple probesets were avail-
able for a given gene, the probeset with the best target
region overlap with the nCounter target region was
chosen. Where all probesets were equivalent in overlap,
one was chosen at random (see Additional file 5 for pro-
beset mappings).

Correlation between platforms
nCounter data was log-transformed and normalized to
either a single, or to the mean of two, log-transformed
control gene measurements. Where indicated, micro-
array expression values were similarly normalized to sin-
gle or multiple control gene expression values. The two
platforms were compared by Pearson correlation of each
gene across samples.

Log-ratio accuracy and precision analysis
Signal detection slopes were calculated by taking the
slope of a linear model fit to log-transformed microarray
expression values versus log-transformed, control-gene-
normalized nCounter measurements. Although spline-fitted
curves are often used for similar spike-in experiments
to allow for expression-level dependencies, expression
of each gene is generally contained within a smaller
range than spike-in controls, and therefore we found it
appropriate to use linear regression for each individual
gene. For this analysis, each nCounter dataset was nor-
malized to two cell-type-specific control genes, while
microarray datasets were not normalized to control
genes. Noise in unexpressed microarray probesets was
examined by measuring the standard deviation of all
possible microarray log-ratios between pairs of samples
for each gene in one of two sets: 1) all genes called unex-
pressed by the nCounter; and 2) all genes called invariant
across samples by the nCounter (log-transformed, control-
gene-normalized nCounter variance < 0.1) but strictly un-
saturated on the microarray (microarray expression value
median < 11, see Additional file 2).

Results
Microarray expression value level and variance indicate
transcript presence and correlation with nCounter
measurements
We compared a previously acquired single-color micro-
array dataset of 312 samples from 9 batches, containing
multiple cell types and diagnoses (see Additional file 1),
with nCounter data from 47 of these same RNA sam-
ples, acquired in 6 nCounter Analysis System runs over
8 days (see Additional file 6). An additional 7 RNA samples
were measured by nCounter for inter-run comparisons.
The nCounter panel was designed to detect transcripts of
65 genes, including cell-type-specific control genes, span-
ning a wide range of expression levels and variances (see
Additional file 5). Two nCounter probesets were excluded:
one for poor predicted hybridization specificity, and one
based on hybridization failure. nCounter data was proc-
essed as described in Methods, using spiked positive and
negative control probes to correct for hybridization effi-
ciency and determine count thresholds for unexpressed
genes, respectively. Technical replicates of the same sample
on different nCounter runs were highly correlated (see
Additional file 4), and variation between samples of differ-
ent diagnoses was greater than that between samples of the
same diagnosis in different nCounter runs (see Additional
file 4), implying very little inter-run variability. Reduced
inter-run correlations in CD14+ monocyte (CD14) samples
were due to one outlier (see Additional file 4), which was
not used in subsequent nCounter versus microarray com-
parisons. Based on this analysis, we considered nCounter
run-effects negligible and processed all samples for each
cell type together, disregarding run membership. As the
nCounter Analysis System experiment measured a small
number of genes, it was not possible to normalize across
samples by fitting expression measures to a common dis-
tribution [26]. Instead, nCounter transcript counts were
normalized to selected control genes (see Additional file 3),
as described in Methods.
Because cell type greatly influences expression patterns

[28], and because our microarray datasets consisted of
cell-type-specific batches that confound effects from
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these two variables, each cell type was treated as a sep-
arate dataset for processing. Microarray datasets were
preprocessed by RMA and, where applicable, corrected
for batch effects by ComBat, as described in Methods.
The resulting log-transformed, standardized microarray
values are referred to as “microarray expression values”
throughout this manuscript.
With nCounter thresholds determined from negative

control probe counts, we identified expressed and unex-
pressed genes in each cell type. Unexpressed genes were
characterized by both low expression and low variance on
the microarray (Figure 1A). It is important to note that
many genes identified as expressed by the nCounter ana-
lysis system had microarray expression values lower than
those identified as unexpressed, confirming on a new plat-
form the observation made by Irizarry and colleagues
[35,36] that probe-effects prevent strict, experiment-wide
thresholding of expressed genes. Introducing a second vari-
ance threshold might improve identification of unexpressed
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CD4 and CD14 RNA samples were run on multiple
microarray batches, leaving microarray datasets poten-
tially confounded by technical artefacts. Although
principal component analyses of the entire datasets be-
fore batch correction demonstrated obvious batch ef-
fects (see Additional file 9), batch correction had very
little effect on most genes examined in this study (see
Additional files 7, 8, 9). In fact, correlation between
microarray and nCounter measurements remained glo-
bally unchanged with batch correction of the CD4 and
CD14 microarray datasets. Direct comparison of batch-
corrected and non-batch-corrected data (see Additional
file 9) indicates that this correction dramatically improved
correlation of several genes in the CD14 dataset while the
median gene correlation decreased slightly, possibly due
to a reduction in covariance that would be predicted if
batch correction reduced microarray variance in compari-
son to noise levels. These gene-specific effects highlight
the importance of using batch-correction algorithms, such
as ComBat, that can normalize at the gene level even with
many covariate groups spread across batches.
Examination of the inter-platform correlation coeffi-

cient for each expressed gene versus either its median
expression level or variance (Figure 1B) demonstrated
that high variance generally corresponded with good
correlation. Indeed, Pearson correlation relies on the co-
variance of two variables, inherently requiring variation of
both, but it is interesting to note that many low-variance
genes also exhibited good inter-platform correlation. This
empirically indicates high precision of microarray mea-
surements, allowing successful identification of true
transcript variation over platform-specific noise for
many genes, even with low inter-sample variation. In
comparisons of inter-platform correlation with median
expression, genes with very low and very high expres-
sion generally had poorer correlation. Directly plotting
microarray expression values against their correspond-
ing control-gene-normalized nCounter measurements
revealed large variability at the low end of expression and
flattening of microarray values at the high end (Figure 1C).
Taken together, these data suggest that low expression
measurements on the microarray may have been obscured
by background noise while high measurements were likely
saturated.

Microarray signal detection accuracy depends on
expression level and is dataset-specific
One metric used for determining microarray measure-
ment accuracy is the “signal detection slope” [5], or the
slope of linear regression relating measured microarray
expression values to log-transformed, known input tran-
script concentrations. A slope of one indicates that the
microarray accurately reflects the input. To examine
microarray accuracy using real experimental data, we
calculated the signal detection slope of microarray ex-
pression values versus log-transformed, control-gene-
normalized nCounter measurements by fitting linear
regressions to the paired platform measurements of each
gene. Figure 2A shows signal detection slope plotted
against correlation coefficient. Because both correlation
coefficients and signal detection slopes were determined
by comparison of the same measurements, genes with
low correlation also showed low signal detection. How-
ever, genes with high correlation did not necessarily have
high signal detection, instead exhibiting a much wider
range of signal detection slopes. In order to better
understand this spread, we filtered for genes with good
inter-platform correlation (Pearson’s correlation coeffi-
cient > 0.5) and plotted these signal detection slopes ver-
sus the median microarray expression value (Figure 2B).
Signal detection accuracy was globally reduced (approxi-
mately 0.5), with slopes particularly dampened in genes
with high (e.g. high end of CD16+ neutrophil, referred
to as CD16, dataset) and low (e.g. low end of CD4 data-
set) microarray expression values. Even within the same
expression level ranges, signal detection varied by data-
set, indicating variable effects of independent prepro-
cessing and/or tissue type on accuracy reduction. Batch
correction slightly reduced signal detection in general,
again possibly due to covariance reduction through de-
creasing microarray variance (see Additional file 10).

Noise in microarray expression values is dataset-specific
As noted above, inter-platform correlation of low-variance
genes demonstrated wide variability within and across
datasets (Figure 1B), suggesting variable levels of noise in
the microarray measurements. To examine microarray ex-
pression value precision in each dataset, we adapted a
metric developed by McCall et al. [17] for spike-in data
and examined the standard deviation of microarray log-
ratios of unexpressed and invariant genes, as described in
Methods. Noise of unexpressed genes varied between
datasets (Figure 3A), indicating either a tissue-specific ef-
fect or an artefact of the preprocessing of each dataset.
Batch correction slightly reduced this variation, suggesting
improvements in precision. Comparison with microarray
median expression values (see Additional file 11) dem-
onstrated that noise amplitude of unexpressed genes
remained largely independent of microarray expression
values. The CD4 dataset had significantly less noise
than the CD14 and CD16 datasets (Figure 3A), imply-
ing that comparisons of low variance gene expression
values might be more reliable in this dataset. Indeed,
this was observed in the generally improved inter-
platform correlation coefficients of low-variance genes
in the CD4 subset (Figure 1B, blue). Because noise in un-
expressed genes only addresses precision at low micro-
array expression values and because our unexpressed gene
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sets were of different sizes, we also examined microarray
precision in invariant genes over a wider range of ex-
pression. To this end, we used nCounter measurements
to select genes with low variance across all samples disre-
garding diagnosis (normalized variance < 0.1, Figure 1B
right panel) and strictly filtered for genes not saturated on
the microarray. Examination of this noise metric across
datasets (Figure 3B) revealed the same trends for batch
correction and cell-type-specificity. Comparing precision
of invariant gene measurements versus median expression
values on the microarray (see Additional file 11) indicated
that genes with very high expression tended to better pre-
cision. Although we had filtered strictly to avoid saturated
microarray expression values, this precision trend, as well
as the binned variance properties depicted in Additional
file 2, suggests that saturation or compression artefacts of
RMA preprocessing [6] may begin to reduce inter-sample
variation at even lower expression values.

Discussion
While we are not the first to ask questions about micro-
array interpretation of gene expression and log-ratios,
our approach is unique in its use of a count-based tech-
nology to examine diverse biological samples. This has
enabled us to examine the properties of microarray data
representative of real experimental questions and to
present the new observation of tissue-specific noise.
Through examination of inter-platform correlation and
expressed versus unexpressed gene properties, we have
demonstrated that variance measurement may aid in the
determination of whether or not a gene is expressed, par-
ticularly at low microarray expression values. Irizarry and
colleagues have clearly shown that a low microarray ex-
pression value does not necessarily predict an unexpressed
gene [35,36]. The small number of genes tested in the
present study would suggest that simultaneous thresholds
for microarray gene expression level and variance might
perform better than expression level thresholds alone to
identify present versus absent transcripts (Figure 1A), but
nCounter measurement of a larger gene set would be ne-
cessary to develop such a method. Indeed present/absent
calls, expression thresholds and, most popularly, variance
filters [38] are frequently used in downstream microarray
analyses to reduce multiple testing and improve power for
discovery (as compared in [39]). Our demonstration that
unexpressed genes generally have low microarray expres-
sion values and variances provides empirical justification
particularly for using the intersection of such filters to re-
move uninformative probesets.
Our comparison of log-fold-changes measured by

microarray and nCounter platforms has revealed that
signal detection accuracy of the microarray varies dra-
matically by expression level. Similar to previous studies
with constructed datasets [5,6,17,18,21], our data show
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global compression most extreme at very high and low
gene expression values. Importantly, we noted that sig-
nal detection slope compression also varies by dataset,
indicating that effect sizes measured by log-fold changes
are not necessarily comparable between datasets prepro-
cessed separately. Thus, comparing the magnitudes of
expression changes in genes expressed at different levels
or genes in different datasets requires knowledge of their
individual signal detection slopes.
For precision estimation, we examined noise of genes

defined as unexpressed or invariant by nCounter mea-
surements. The RMA algorithm stabilizes variance with
respect to expression level [8], and thus noise patterns
from probesets detecting unexpressed genes should re-
flect noise across the whole microarray. Accordingly, we
found the same patterns of precision estimates in unex-
pressed genes as in invariant genes across a wider range
of expression levels. We noted that noise appeared
strongly tissue-dependent, with less in the CD4 than the
CD14 or CD16 datasets. Binned mean expression versus
variance plots (see Additional file 2) support this pattern
of tissue-specific precision, showing a high-variance peak
at very low expression levels in the CD14 and CD16
datasets (likely representing unexpressed gene noise)
that is nearly absent in the CD4 dataset. Because the same
RNA was used for both the nCounter and microarray
measurements, dataset-dependent noise differences can
only be due to properties intrinsic to the frozen RNA
samples. Transcriptomes differ by tissue (see Additional
file 12 and [36]), and thus one explanation for differing
noise levels is that levels of cross-hybridizing nucleotides
also vary by cell type. We previously showed that RNA
transcript profiles of cells from the myeloid lineage
(CD14+ monocytes and CD16+ neutrophils) change dra-
matically if blood is left several hours before processing
[28]. Although we found no evidence of large-scale loss of
RNA integrity, it is possible that even during rapid blood
processing, RNA from myeloid cells suffers slightly more
degradation, a factor likely to confound microarray more
than the nCounter measurements [24]. Another plausible
explanation is cell-type-specific contamination with gen-
omic DNA, particularly in the CD16+ neutrophil subset,
which has comparatively less RNA per cell [28] and thus a
higher ratio of genomic DNA to RNA. Genomic DNA
would likely be problematic in the transcriptional step
of microarray sample preparation [2] but not the
amplification-free nCounter procedure [24]. Regardless
of the source of this dataset-specific noise, such effects
are important to remember for cross-tissue studies,
such as the Gene Expression Barcode [35,36], where
probes reflecting signal in one tissue type may be con-
flated by noise in another. Our precision results are
based on examination of a limited number of genes in
three different leukocyte subsets, and future studies of
more genes in additional tissue types will begin to shed
light on the origin and extent of this dataset-specific
noise.

Conclusions
This analysis of gene expression microarray measure-
ments versus transcript count ratios highlights three as-
pects of microarray data directly relevant to users of the
technology. First, inter-sample variance may indicate
transcript presence in genes with low microarray
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expression values. Second, signal detection accuracy de-
pends strongly on expression level, even in datasets of
diverse biological samples with variable background and
small gene expression ranges. Third, precision is dataset-
specific, and therefore power to detect subtle biological dif-
ferences may differ between tissues even when measured
on the same microarray platform. Without careful consid-
eration of these biases and confirmatory measurements by
a second technology, microarray platform discoveries may
be missed or misinterpreted.

Availability of supporting data
The data sets supporting the results of this article are
available in the ArrayExpress repository: https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-2452/.

Additional files

Additional file 1: Preprocessing samples. Microarray samples used for
preprocessing: Breakdown of preprocessed microarray batches including
biological covariates.

Additional file 2: Mean v variance. Binned mean and variance
characteristics of microarray datasets: For each gene, a microarray
expression value mean and mean within-batch variance was calculated.
Genes were then binned by expression value means, and statistics were
averaged to achieve an average mean expression value and average
mean within-batch-variance for each bin. These two values are plotted.

Additional file 3: Control genes. Microarray properties of nCounter
control genes: Details of each cell-type-specific control gene used.

Additional file 4: nCounter run comparison. Examination of inter-run
technical effects of nCounter data: A) Log-transformed raw nCounter
counts for technical replicates of the same sample are plotted with
Pearson correlation indicated. All genes determined to be globally
expressed in CD4 samples are included. B) Boxplots depict Pearson
correlations between log-transformed raw nCounter counts for samples
of the same and different diagnoses in the same and in different
nCounter runs. All genes determined to be globally expressed in the
designated cell types are included. In the bottom panel, the outlying
CD14 sample has been removed. C) Inter-sample Pearson correlation
coefficients of log-transformed raw nCounter counts between all CD14
samples. Red star indicates outlier.

Additional file 5: nCounter probes. nCounter probe details and
mapped Affymetrix Hugene 1.1 ST array probesets: nCounter probe
design schemes, isoform coverage, and microarray probeset mappings
are tabulated.

Additional file 6: nCounter samples. Sample composition: Details are
provided for samples run on the nCounter analysis system.

Additional file 7: Correlation comparison. Effects of microarray and
nCounter processing on inter-platform correlation: Cell-type-specific
nCounter datasets were normalized to the indicated control genes and
log-transformed. Microarray data were preprocessed by RMA and then
batch normalized through ComBat and/or normalized to control genes
where indicated. Boxplots show Pearson correlation.

Additional file 8: Correlation comparison table. Effects of microarray
and nCounter processing on inter-platform correlation: Table summarizes
inter-platform correlation of datasets using different processing and
normalization procedures.

Additional file 9: Microarray batch effects. Batch effects in microarray
datasets: A) Samples from full CD4 and CD14 microarray datasets are
plotted by first and second principle components before and after ComBat
batch correction. Color indicates batch membership. B) Pearson correlation
of expressed genes across samples in nCounter versus RMA-preprocessed
microarray datasets was subtracted from the same correlation in nCounter
versus RMA-preprocessed and ComBat-corrected microarray datasets.
Boxplots depict these differences in CD4 and CD14 datasets to indicate the
effect of batch correction on gene-based platform correlation.

Additional file 10: Batch correction and accuracy. Effect of batch
correction on signal detection accuracy: A) Signal detection slope is
plotted versus inter-platform correlation as in Figure 2A: blue = RMA- and
red = RMA + ComBat-preprocessed microarray expression values. B) Signal
detection slope of expressed genes across samples in nCounter versus
RMA-preprocessed microarray datasets was subtracted from the same
signal detection slope in nCounter versus RMA-preprocessed and
ComBat-corrected microarray datasets. Boxplots depict these differences
in CD4 and CD14 datasets to indicate the effect of batch correction on
signal detection accuracy.

Additional file 11: Noise v expression value. Comparison of noise
versus microarray expression value. A) For each unexpressed gene, the
standard deviation of log-ratios of all pairs of samples from RMA + ComBat-
(CD4 and CD14) or RMA-preprocessed (CD16) microarray data is plotted
versus the gene’s median microarray expression value. B) As (A) for invariant
genes.

Additional file 12: Mean expression histograms. Mean expression
profiles: Histograms depict mean RMA + ComBat- (CD4 and CD14) or
RMA-preprocessed (CD16) microarray expression values from full microarray
datasets.
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