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Abstract

Background: Tumour necrosis factor (TNF) superfamily cytokines and their receptors regulate diverse immune
system functions through a common set of signalling pathways. Genetic variants in and expression of individual
TNF superfamily cytokines, receptors and signalling proteins have been associated with autoimmune and
inflammatory diseases, but their interconnected biology has been largely unexplored.

Methods: We took a hypothesis-driven approach using available genome-wide datasets to identify genetic variants
regulating gene expression in the TNF superfamily cytokine signalling network and the association of these variants
with autoimmune and autoinflammatory disease. Using paired gene expression and genetic data, we identified
genetic variants associated with gene expression, expression quantitative trait loci (eQTLs), in four peripheral blood
cell subsets. We then examined whether eQTLs were dependent on gene expression level or the presence of active
enhancer chromatin marks. Using these eQTLs as genetic markers of the TNF superfamily signalling network, we
performed targeted gene set association analysis in eight autoimmune and autoinflammatory disease genome-wide
association studies.

Results: Comparison of TNF superfamily network gene expression and regulatory variants across four leucocyte
subsets revealed patterns that differed between cell types. eQTLs for genes in this network were not dependent on
absolute gene expression levels and were not enriched for chromatin marks of active enhancers. By examining
autoimmune disease risk variants among our eQTLs, we found that risk alleles can be associated with either increased
or decreased expression of co-stimulatory TNF superfamily cytokines, receptors or downstream signalling molecules.
Gene set disease association analysis revealed that eQTLs for genes in the TNF superfamily pathway were associated
with six of the eight autoimmune and autoinflammatory diseases examined, demonstrating associations beyond single
genome-wide significant hits.

Conclusions: This systematic analysis of the influence of regulatory genetic variants in the TNF superfamily network
reveals widespread and diverse roles for these cytokines in susceptibility to a number of immune-mediated diseases.
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Background
The tumour necrosis factor (TNF) cytokine and receptor
superfamilies are composed of 18 ligands (TNFSF) and
29 receptors (TNFRSF), respectively, that share both
structural and signalling characteristics [1–3]. Members
of these superfamilies modulate immunological re-
sponses via co-stimulation, maturation and cell death
signalling pathways. In addition, they play important
roles in bone homeostasis, eccrine gland development
and the nervous system. The expression of TNFSF and
TNFRSF molecules is often limited to particular cell
types and modulated by the maturation or activation
status of these cells [4]. TNFRSF ligation has three broad
consequences: cellular activation via TRAF family
proteins leading to NF-κB and MAP kinase activity; cas-
pase-dependent death via FADD and caspase-8; and
caspase-independent necroptosis mediated by RIP1
and RIP3 kinases. Certain TNFRSF members recruit
the adaptor protein TRADD, which subsequently sig-
nals through either TRAFs or FADD, depending on
cellular context. In addition, decoy receptors within
the superfamily can inhibit TNFSF signalling by bind-
ing specific ligands without initiating downstream sig-
nalling. Recent research has begun to shed light on
additional complexities of these signalling pathways.
For example, the molecules cFLIP, RIP3 and caspase-8 co-
ordinately drive TNF signalling through TRADD to
initiate survival, apoptotic or necroptotic pathways
depending on their relative concentrations and/or ac-
tivities [5].
Genetic studies have implicated TNFSF and TNFRSF

members in immune-mediated diseases. Mendelian syn-
dromes such as autoimmune lymphoproliferative syn-
drome (ALPS) and TNF receptor associated periodic
syndrome (TRAPS) are caused by mutations in FAS (or
other members of the FAS signalling pathway) and
TNFRSF1A, respectively [6–8]. The mechanisms by
which missense mutations drive these two syndromes
differ: heterozygous dominant negative FAS mutations
lead to defective signalling in ALPS patients [6], while
heterozygous TNFRSF1A mutations in TRAPS patients
result in endoplasmic reticulum retention of mutant
proteins and exacerbated inflammatory signalling [9].
Mutations in TNFRSF members can also lead to com-
mon variable immunodeficiency (CVID): approximately
9 % of patients carry one or two variant alleles of
TNFRSF13B (encoding TACI) [10] and a few patients
carry biallelic mutations of TNFRSF13C (encoding
BAFF-R) [11]. Although CVID is by definition an
immunodeficiency, many CVID patients suffer from
autoimmune diseases [12]. For example, heterozygous
carriers of TNFRSF13B mutations are susceptible to
autoimmunity via the failure of central tolerance to se-
lect against autoreactive B cells [13]. Genome-wide

association studies (GWASs) of common autoimmune
and autoinflammatory diseases have identified associa-
tions with single nucleotide polymorphisms (SNPs) near
a quarter of the 88 autosomal genes encoding TNFSF
cytokines, their receptors and downstream signalling
molecules [14] (Additional files 1, 2 and 3). Many gen-
etic variants in the TNFSF network are associated with
multiple diseases and many diseases are associated with
multiple variants in TNFSF network genes. Whether the
same genetic variant truly underlies different diseases is
likely to remain ambiguous until the causal variants are
fine-mapped [15–17].
Increased expression of TNFSF and TNFRSF members

has been observed in the serum and/or at the site of in-
flammation in patients with immune-mediated disease,
including rheumatoid arthritis (RA) [18–20], inflamma-
tory bowel disease (IBD) [21–25] and systemic lupus
erythematosus (SLE) [26–28]. In addition, mouse models
of both autoimmune disease and allergic asthma can be
ameliorated by genetic or therapeutic blockade of
numerous TNFRSF signalling pathways [29]. TNFSF
pathogenicity in these diseases is further corroborated
by the success of therapeutically targeting TNF [30] and
TNFSF13B (BAFF) [31], as well as on-going develop-
ment of therapeutics against additional family members
[32]. Given that the majority of disease-associated gen-
etic variants in TNFSF-related genes are non-coding and
that expression of many of these genes is dysregulated in
the same diseases, the question arises as to whether
genetic variants directly drive pathogenic expression
changes. Recent genome-wide expression quantitative
trait loci (eQTL) studies have uncovered disease-
associated SNPs that may regulate expression of nearby
TNFSF and TNFRSF members in several primary leuco-
cyte subsets [33–40]. In-depth studies of specific poly-
morphisms have revealed direct consequences on gene
expression and occasionally downstream phenotype for
disease-associated variants located near TNFSF4 [41, 42],
TNFRSF1A [43], TNFSF14 [44], CD40 [45], TNFRSF6B
[46] and TNFSF15 [47–50]. However, most of these
studies focus on a single leucocyte subset or whole blood
measurements.
Here we took a hypothesis-driven approach to in-

vestigate how genetic variants that regulate genes en-
coding TNFSF and TNFRSF members, as well as key
downstream signalling molecules, influence disease
susceptibility. Our workflow is depicted in Fig. 1. We
examined regulation of these genes across peripheral
blood leucocyte subsets by mapping eQTLs. Using
these eQTL SNPs as genetic markers of TNFSF-
related genes, we performed gene set association ana-
lysis with autoimmune and autoinflammatory diseases.
This revealed widespread association with the TNFSF
gene network.
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Methods
GWAS Catalog search for TNFSF-related genes and
intersection with eQTLs
Processing and analysis of data from the NHGRI
GWAS Catalog [14] is described in Additional file 4:
Supplemental Methods.

Sorting peripheral blood subsets from individuals
Whole blood collection for this study was approved
by the Cambridgeshire 3 Research Ethics Committee
(08/H0306/21). Written informed consent was obtained
from all participants. Whole blood from healthy con-
trols and individuals with newly diagnosed, flaring
Crohn’s disease (CD) or ulcerative colitis (UC) was
separated into peripheral blood leucocyte subsets by
magnetic bead-based positive selection [51, 52] as de-
scribed in Additional file 4: Supplemental Methods.
CD4+ T cells, CD8+ T cells, CD14+ monocytes and
CD16+ neutrophils were used in this study, a subset
of the samples described in [53].

Gene expression measurements and data processing
RNA (200 ng) from each sample was prepared for
Human Gene 1.1 ST 96-Array (Affymetrix) using the
Ambion WT Expression Kit and GeneChip WT Ter-
minal Labeling and Controls Kit (Affymetrix). These
samples were run in batches of 96 on a Gene Titan
Multi-Channel (MC) Instrument (Affymetrix). Gene
expression data are available through ArrayExpress,
accession numbers E-MTAB-3554 ([53] eQTL ana-
lysis) and E-MTAB-4887 (comparison across leucocyte
subsets in healthy controls). Processing of gene

expression data is described in Additional file 4: Sup-
plemental Methods.

Genotyping for eQTL analysis
DNA samples were extracted with the Qiagen All-
Prep DNA/RNA Mini kit from peripheral blood cells.
DNA was genotyped on the Illumina Beadchip
HumanOmniExpress-12v1 platform at the Wellcome
Trust Sanger Institute in two batches. These data have
been deposited in the European Genome-phenome
Archive (EGA; accession number EGAS00001001251
[53]) and are available on request. Genotype calls were
made using GenoSNP software. Processing of genotype
data is described in Additional file 4: Supplemental
Methods.

eQTL analysis
Details of samples used in eQTL analyses are tabulated
in Additional file 5. Cis-eQTL mapping to autosomal
TNFSF-related genes was carried out in each cell type
separately using the All.cis function of the GGtools
Bioconductor package [54]. This method fits a generalised
linear model with expression as the dependent variable
and then performs score tests (one degree of freedom
asymptotic chi-squared tests) for the addition of genotype
to the model. P values were calculated in a one-tailed test
from the chi-squared scores. Probe set location annotation
was based on Ensembl release 71 and SNPs were anno-
tated with SNPlocs.Hsapiens.dbSNP.20120608 [55]. SNPs
were filtered for minor allele frequency above 5 %. False
discovery rate (FDR) was estimated by sample label per-
mutation [56] with a threshold of 10 % applied for signifi-
cance. Because our ultimate goal in this re-analysis study

Gene set = TNF superfamily-related genes 

Expression across cell types 

Cis-eQTLs 

Genetic gene set association 

Relation to gene expression 

Relation to enhancer marks 

Intersection with GWAS hits 

Microarray gene expression data from 5 healthy 
controls, 4 peripheral blood cell subsets 

Microarray gene expression data and SNP genotyping 
data from  39 healthy controls and  62 IBD patients, 

4 peripheral blood cell subsets 

NHGRI GWAS Catalog Nanostring expression measurements in 
12-14 healthy controls and IBD patients,  

3 peripheral blood cell subsets  

H3K27ac ChIP-seq data from 1 individual 
per subset, 3 peripheral blood cell subsets 

GWAS SNP data from 8 autoimmune and 
autoinflammatory diseases 

Fig. 1 Flow chart of analyses. Flow chart demonstrates how results from each analysis feed into the next. Datasets analysed are listed in blue italics
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was to perform gene set disease association analysis, we
wished to uncover additional eQTLs to tag our TNFSF-
related genes. We felt that a 10 % FDR threshold provided
a reasonable compromise between maximising eQTL dis-
covery and minimising false positives. We found 320 per-
mutations to be more than sufficient to achieve FDR
stability (Additional file 4: Figure S1a). Regulatory ele-
ments have been shown to primarily reside within 50 kbp
of the transcription start and end sites of a gene [57]. By
varying the radius from 50 kbp to 1 Mbp while controlling
the FDR at 10 %, we found that the number of eQTL dis-
coveries increased from 50 to 100 kbp and then declined
at larger radii tested (Additional file 4: Figure S1b). Thus,
for each gene, SNPs within the region from 100 kbp up-
stream to 100 kbp downstream of the gene were desig-
nated as cis. For each cis-eQTL in the combined IBD and
healthy control cohort, we also performed linear regres-
sion of expression on SNP genotype in patients and con-
trols separately. We then plotted the coefficients of the
genotype term for each eQTL in IBD patients versus
healthy controls to compare effect sizes and directions.
See Additional file 4: Supplemental Methods for variable
selection at loci with multiple significant cis-eQTL SNPs.

Nanostring nCounter measurements and data processing
RNA was previously measured by the nCounter Analysis
System (Nanostring Technologies) [58]. See Additional
file 4: Supplemental Methods for sample, measurement,
and normalisation details.

Intersection of H3K27ac chromatin immunoprecipitation
sequencing data with eQTLs
H3K27ac chromatin immunoprecipitation sequencing
(ChIP-seq) and ChIP input DNA sequencing .bed files for
CD4+ T cells, CD8+ T cells and CD14+ monocytes were
obtained from the NIH Roadmap Epigenomics Project
datasets [59] available through the Gene Expression
Omnibus (GEO) database [60]: H3K27ac CD4+ CD25−
primary cells, GSM997239; input CD4+ CD25− primary
cells, GSM1112781; H3K27ac CD8 primary cells,
GSM1102781; input CD8 primary cells, GSM1102806;
H3K27ac CD14 primary cells, GSM1102782; input
CD14 primary cells, GSM1102807. The available H3K27ac
immunoprecipitated and input DNA sequencing data from
CD4+ CD25− T cells were not from the same sample. Pro-
cessing and analysis of H3K27ac ChIP-seq data are de-
scribed in Additional file 4: Supplemental Methods.

Hypothesis-driven genetic gene set analyses in previous
GWAS datasets
Genetic studies typically examine association of individ-
ual SNPs with disease. This approach fails to exploit
functional relationships between SNPs affecting the
same gene or biological pathway. To address this, we

performed gene set association analysis using data from
previous GWASs. Previous GWAS datasets are detailed
in Additional file 6. Processing of these genetic data is
described in Additional file 4: Supplemental Methods.
SNPs to represent the TNFSF-related gene set were
chosen as follows. In each cell subset, we selected SNPs
in linkage disequilibrium (LD) r2 ≥ 0.8 with the strongest
significant cis-eQTL SNP for each TNFSF-related gene.
This was performed using 1000 Genomes Phase 1 EUR
population vcf files [61] in PLINK [62, 63]. In each
GWAS dataset, we then extracted all of these SNPs that
were present on the SNP chip used. Next, we filtered the
SNPs for relative independence (multiple correlation co-
efficient ≤ 0.33) to make our SNP set representative of
TNFSF-related genes, referred to hereafter as the TNFSF
eQTL SNP set. In each GWAS dataset, hypothesis-
driven gene set association analysis was based on that of
Sun et al. [64] as follows. We calculated chi-squared
allelic case-control association statistics and inflation fac-
tor (λ) for the TNFSF eQTL SNP set. The same independ-
ence filtering and association testing was then performed
genome-wide. Qq-plots were compared between TNFSF
eQTL SNPs and SNPs genome-wide. λ1000 values were cal-
culated by rescaling λ for 1000 cases and 1000 controls:

λ1000 ¼ 1þ λ−1ð Þ•
1

ncases
þ 1

ncontrols
1

1000 þ 1
1000

To calculate a self-contained gene set association stat-
istic [65, 66], phenotypes were permuted 10,000 times
and chi-squared disease association statistics were calcu-
lated in each permuted dataset for the TNFSF eQTL
SNP set. We then summed chi-squared scores across
SNPs in the original data and in each permuted dataset.
Empirical p values were calculated as the fraction of
summed scores from permuted datasets that were
greater than that from the original data. A similar pro-
cedure was followed to estimate gene-level disease asso-
ciation. For each gene, the sum of chi-squared statistics
was compared with the sum of chi-squared statistics in
the permuted data to obtain an empirical p value. Gene-
level p values were then adjusted for the multiple genes
tested using the Benjamini–Hochberg method. Compari-
son of gene length with disease association p values re-
vealed negligible impact of gene length on association
statistics (Additional file 4: Figure S2).

Results
TNF superfamily-related genes are differentially regulated
among leucocyte subsets
We curated genes that encode members of the TNFSF
and TNFRSF and their downstream signalling molecules
from the literature (Additional file 2) and examined their
expression in CD4+ T cells, CD8+ T cells, CD14+
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monocytes and CD16+ neutrophils sorted from periph-
eral blood from five healthy individuals (Fig. 2). The sig-
nalling molecules downstream of superfamily receptors
were generally expressed more broadly across cell sub-
sets than TNFSF ligands or TNFRSF receptors. Hier-
archical clustering of gene expression levels across cell
types revealed cell type-specific expression, separating the
lymphoid (CD4+ and CD8+ T cells) and myeloid (mono-
cytes and neutrophils) lineages and clearly distinguishing
monocytes from neutrophils. Such cell type clustering oc-
curred even when only TNFSF, TNFRSF or signalling mol-
ecules were considered (Additional file 4: Figure S3).

To examine the relationship between genetic variation
and expression of these TNFSF-related genes, we
performed targeted cis-eQTL mapping in a previously
analysed cohort of combined healthy controls and indi-
viduals with newly diagnosed IBD [53]. Although eQTLs
have been mapped for TNFSF-related genes in genome-
wide studies, our targeted approach reduced the mul-
tiple testing burden and thereby found significant associ-
ations for additional regulatory variants. We mapped
eQTLs in CD4+ T cells, CD8+ T cells, CD14+ monocytes
and CD16+ neutrophils, accounting for potential con-
founders including disease status, gender and age

LTA

LTB

4 8 12

Log2 normalized 
gene expression 

TNFSF-related gene expression across cell types 

CD4+ T cells 
CD8+ T cells 
CD14+ monocytes 
CD16+ neutrophils 
ligands 
receptors 
signalling

Fig. 2 Expression of TNFSF-related genes differs across leukocyte subsets. Expression of TNFSF-related genes was measured across four cell subsets
from five healthy controls by microarray. Expression values are hierarchically clustered. Cell types are coloured blue (CD4+ T cells), purple (CD8+ T cells),
green (CD14+ monocytes) and red (CD16+ neutrophils). Genes are grouped by function and coloured yellow (TNFSF member ligands), orange (TNFRSF
member receptors) and black (adaptors and signalling molecules in TNFSF signalling network)
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(Additional file 4: Supplemental Methods). At a 10 %
FDR threshold, we identified 51 genes with a cis-eQTL
in at least one cell type (Additional file 7). eQTLs have
been mapped in CD4+ T cells, monocytes and neutro-
phils in other cohorts [34, 35, 37–40]. Of the genes we
identified with eQTLs in these subsets, 56 % were previ-
ously reported in at least one of these other cohorts
(Additional file 7). eQTL effects on gene expression were
found to be generally concordant between IBD patients
and healthy controls (Additional file 4: Figure S4). Only
six genes, such as the apoptosis inducer FAS (also
known as CD95; Fig. 3a), had detectable eQTLs across
all cell types examined (Additional file 4: Figure S5).
Four of these six genes function in the apoptotic path-
way by which FAS signals through FADD to activate
caspase-induced death and one (MLKL) is integral to the
necroptotic pathway [67]. TNFSF and TNFRSF genes
often appear in clusters throughout the genome due to
their origin via gene duplication [68] and therefore many
share cis elements. Intriguingly, we identified one SNP
for which the minor allele was associated with increased
neutrophil expression of the TRAIL receptor TNFRSF10B
(DR5) and decreased monocyte expression of the decoy
TRAIL receptor TNFRSF10C (DcR1) approximately
34 kbp away (Fig. 3b).
Use of a fixed FDR threshold can lead to underestima-

tion of the extent of eQTL sharing across tissues due to
varying power from different sample sizes and effect
sizes, as well as random sampling error. A heatmap of
the strongest eQTL SNP for each gene in each cell type
revealed a greater level of common regulation than
evidenced by a rigid FDR threshold (Fig. 3c; Additional
file 4: Figure S5). Some genes, such as TNFSF14
(LIGHT), exhibited strong subset-specific regulation,
while others, such as its receptor TNFRSF14 (HVEM),
met our significance threshold in only one subset but
showed a trend toward association in other cell types.
Clustering these test statistics revealed that the greatest
similarity between cell subsets was among T cells, simi-
lar to observations at the expression level.
To better understand the complexity of cis genetic

control over gene expression in TNFSF-related genes,
we examined each gene in each cell type with more than
one significant cis-eQTL SNP. By fitting a linear model
with all significant eQTL SNPs for the gene as predic-
tors, we performed exhaustive variable selection to find
the most informative set of genetic predictors (Fig. 3d;
Additional file 8). Most cis-eQTLs could be attributed
to a single SNP, while some could be explained by up
to four contributing SNPs. Genetic fine-mapping at
these loci could clarify whether these multiple con-
tributing SNPs were truly independent or participat-
ing in mutual tagging of an un-typed causal variant.
Cell types with a greater number of genes with cis-eQTLs

also exhibited greater tendency to have complex, multi-
SNP cis-eQTLs.

eQTLs for TNFSF-related genes are not associated with
average gene expression level or enhancer marks
In microarray measurements, probe effects can hinder
comparisons of expression levels between genes and
saturation and noise can impact measurements at the
extremes [69, 70]. To understand how average gene ex-
pression related to eQTL detection, we utilised expres-
sion measurements of TNFSF and TNFRSF members
acquired by the Nanostring nCounter technology, which
provides a count-based measurement without nucleotide
amplification steps. These data encompassed three of
the four cell types investigated in a similar cohort of
healthy controls and IBD patients [58] (Fig. 4a). Discov-
ery of an eQTL for a gene in a given cell type was not
related to its average expression in relation to other
genes or other cell types. Presence or absence of eQTLs
may instead be regulated by other factors such as tran-
scription factor expression or chromatin state.
To investigate the possibility that eQTLs were associ-

ated with chromatin marks of enhancers, we used primary
leucocyte data from the NIH Roadmap Epigenomics
Project. Acetylation of histone 3, lysine 27 (H3K27ac) has
been shown to delineate active enhancers [71]. Extracting
the most significantly associated eQTL SNP for each gene
in each cell type with a cis-eQTL (FDR < 0.1), we exam-
ined these loci in H3K27ac ChIP-seq data from pri-
mary CD4+ T cells, CD8+ T cells and CD14+

monocytes. In all cell types, eQTLs were, on average,
enriched by H3K27ac immunoprecipitation compared
with input control DNA (Fig. 4b; Additional file 4:
Figure S6a). However, randomly sampled SNPs from
the same cis regions around TNFSF-related genes
showed acetylation similar to that of eQTL SNPs
(Fig. 4c), suggesting that H3K27ac marks are not spe-
cific for eQTLs but rather are characteristic of genic
regions. To control for the fact that we did not have
fine-mapped eQTLs, we repeated this comparison to in-
clude all SNPs tagged (LD r2 ≥ 0.8) by our eQTL SNPs
(Additional file 4: Figure S6b) and again found no differ-
ence in acetylation compared with a random selection of
SNPs from the same genic regions. To examine whether
eQTL strength correlated with acetylation level, the most
significant eQTL SNP for each gene (regardless of
whether the eQTL passed our FDR threshold) was ex-
tracted. The eQTL chi-squared association statistics were
then plotted against acetylation at the same loci (Fig. 4d).
In monocytes, but not in other cell types, we found correl-
ation between eQTL strength and H3K27ac enrichment.
Indeed, relatively few significant eQTLs were strongly
acetylated in the cell type of their discovery, though many
monocyte eQTLs did exhibit greater acetylation in
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monocytes than in other cell types (Additional file 4:
Figure S6c, d). Together, these data demonstrate that,
within our gene set, eQTLs are not enriched for active en-
hancer marks over other SNPs within the genic regions.

TNFSF-related eQTLs are associated with a variety of
autoimmune and autoinflammatory diseases
Loci near 24 % of autosomal TNFSF-related genes have
been associated with autoimmune and inflammatory
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diseases by GWAS (Additional file 3, “Mapped Genes”
column), resulting in highly significant enrichment of
these gene loci with autoimmune diseases (Fisher’s exact
test p = 1.4 × 10−10). However, these SNPs are attributed
to genes by physical proximity, not by evidence of

functional relationship. To understand the role of SNPs
that affect gene expression in immune-mediated disease
susceptibility, we searched for TNFSF-related gene
eQTLs among autoimmune and autoinflammatory
disease-associated SNPs in a comprehensive database of
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Richard et al. Genome Medicine  (2016) 8:76 Page 8 of 15



previous GWASs (the NHGRI GWAS Catalog; Add-
itional file 9). We found that approximately equal
numbers of disease risk alleles were associated with
increased and decreased gene expression (Fig. 5a). For
example, the multiple sclerosis (MS) protective allele
near the co-stimulatory ligand LIGHT (encoded by
TNFSF14) was associated with increased expression of
this molecule in monocytes (Fig. 5b). Examining the
cell types in which these GWAS SNPs were eQTLs
revealed a variety of effects across diseases and cell
types, potentially suggesting protective effects of
TNFSF-related genes in myeloid cells but disease risk
effects of members of this signalling network in T
cells (Fig. 5c). Such cellular diversity emphasises the
distinct influences of TNFSF-related gene variants in
autoimmune and autoinflammatory disease onset. A cav-
eat to this analysis is that because many of the GWASs in
the GWAS Catalog are not fine-mapped, we cannot con-
firm whether eQTL and disease association signals at the
same locus are due to the same causal variant.
Given the immunological roles and interconnected na-

ture of the TNFSF-related gene network, we wished to

examine genetic association of the whole gene set with
autoimmune and autoinflammatory disease. Assignment
of eQTL SNPs to genes for gene set analysis has previ-
ously been proposed to ensure functional relevance of
variants used in gene set testing of genetic data [72].
Using this strategy, we re-analysed available GWAS data
from eight autoimmune and autoinflammatory diseases
for association with TNFSF-related genes. A TNFSF
eQTL SNP set was created by combining the strongest
significant eQTL SNP for each TNFSF-related gene in
each cell type and then filtering these SNPs for relative
independence. LTA, TNF and LTB are located within the
major histocompatibility complex (MHC) and SNPs near
these genes might, therefore, appear disease-associated
due to LD with MHC variants that are strongly associ-
ated with disease. TNF and LTB lacked eQTLs and were
therefore not included in the TNFSF eQTL SNP set. Dis-
ease association with the LTA eQTL SNP could not be
proven independent of the strong MHC association with
many diseases and thus the LTA eQTL was excluded
from the set. The inflation factor (λ) for disease associ-
ation with the TNFSF eQTL SNP set was computed and
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compared with that from genome-wide SNPs thinned
for LD (Table 1; Additional file 4: Figure S7). This ana-
lysis revealed inflated λ values for TNFSF eQTL SNP set
association with six of the eight diseases, in particular
CD and Behçet’s disease (BEH), but not type 1 diabetes
(T1D) or anti-neutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV).
To test total association of TNFSF-related genes with

disease, we employed a self-contained method for gene
set disease association analysis. Self-contained analyses
compare gene set association with a simulated null dis-
tribution of no association. This answers the question of
whether the gene set is associated with disease, without
requiring competitive comparisons with other gene sets
that we cannot a priori assume are not associated with
disease. To this end, we combined disease association
test statistics across the TNFSF eQTL SNP set and used
phenotype permutation to simulate a null distribution,
modelling our method after that of Sun et al. [64]. Total
disease association of a SNP set can be driven by either
a single, highly associated variant or multiple, less asso-
ciated variants. This analysis found significant gene set
association with the same six diseases as the inflation
factor comparison, particularly with primary biliary cir-
rhosis (PBC), MS, CD and BEH (column 3 in Table 1;
Additional file 4: Figure S8).
To reveal whether gene set association results were

driven by eQTLs for particular genes or a more general
inflation of test statistics for these variants, we examined
disease association of eQTL SNPs at the gene level by
the same method (Fig. 6). After correcting for the

number of genes tested, most TNFSF-related genes were
not found to be significantly associated with disease
(Fig. 6; blue shades indicate Benjamini–Hochberg FDR
> 0.1). Most disease-associated genes were unique to
individual diseases but associations with eQTL SNPs
for TNFRSF1A, TNFSF15 and RPS6KA4 were shared
across two or three diseases, similar to results observed by
Parkes et al. [73] in a comparison of genome-wide signifi-
cant loci across diseases. A striking cluster of genes
was associated with PBC, including LTBR (TNFR3),
TNFRSF1A (TNFR1), NFKB1 (the p50 subunit of the
classical NF-κB transcription factor complex), CHUK
(NF-κB inhibitor kinase α) and IKBKB (NF-κB inhibi-
tor kinase β), that all play roles in TNF and lympho-
toxin alpha (LTA) signalling.

Discussion
We have investigated the contribution of genetic vari-
ation in TNFSF-related genes to gene expression and
susceptibility to autoimmune and autoinflammatory dis-
ease. Previous studies have examined the intersection of
a similar variety of genomic data [16] but our approach
is unique in its hypothesis-driven investigation of a bio-
logical pathway. Targeted eQTL analysis revealed exten-
sive and variable genetic regulation. Shared eQTLs
across cell types in the FAS-mediated apoptosis and
necroptosis pathways suggest universality of genetic
regulation of programmed cell death responses. In the
case of TRAIL receptor expression, opposing regulation
of competing signalling and decoy receptors by the same
eQTL implies enhanced upregulation of this TRAIL-
induced death pathway in individuals carrying the minor
allele. eQTL detection was not dependent on gene ex-
pression levels and eQTL SNPs were not preferentially
marked by H3K27ac chromatin modifications. It is pos-
sible that, under conditions of acute cellular activation, a
different relationship between eQTLs and enhancer loci
might emerge.
We studied genes in the TNFSF, their receptors and

associated signalling proteins based on the strong in-
volvement of genes in this cytokine superfamily with in-
flammatory processes and their sharing of downstream
signalling pathways. The downstream molecules in
TNFRSF signal transduction can play roles in additional
pathways, such as pattern recognition receptor signalling
[74], and thus association of these genes with auto-
immune disease may also reflect involvement of add-
itional pathways not addressed in this study. By using
eQTL SNPs as previously suggested by Zhong et al. [72],
we ensured that the variants defining our gene set were
functionally relevant. Through empirical examination of
disease association inflation factors and application of a
phenotype-permutation-based test for significance, we
were able to demonstrate association of TNFSF-related

Table 1 Autoimmune and autoinflammatory diseases show
widespread association with functional variants of the TNFSF
network

Disease λ whole
genomea

λ eQTL
SNP setb

eQTL SNP set
association p valuec

Behçet’s disease (BEH) 1.05 2.48 0.0002

Crohn’s disease (CD) 1.04 2.39 0.0003

Multiple sclerosis (MS) 1.06 1.59 <0.0001

Primary biliary cirrhosis (PBC) 1.06 1.49 <0.0001

Rheumatoid arthritis (RA) 1.02 1.48 0.003

Ulcerative colitis (UC) 1.04 1.44 0.0021

ANCA-associated vasculitis
(AAV)

1.11 1.25 0.17

Type 1 diabetes (T1D) 1.04 1.00 0.77
a λ values were calculated for the whole genome filtered for relative
SNP independence
b λ values were calculated for the TNFSF eQTL SNP set defined as follows: for
each TNFSF-related gene in each cell subset with a significant cis-eQTL
(FDR < 0.1), the strongest eQTL SNP was identified; SNPs with LD r2 ≥ 0.8
with these eQTL SNPs were then extracted from the GWAS dataset and filtered
for relative independence
c Permutation-based p values for TNFSF eQTL SNP set association with disease
were calculated from the same set of SNPs as in the TNFSF eQTL SNP setb
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genes with CD, BEH, PBC, MS, UC and RA, often be-
yond that of known GWAS loci, but we did not find as-
sociation with AAV or T1D.
The fact that the TNFSF eQTL SNP set exhibited ele-

vated λ in diseases associated by GWASs with only one
or two of these variants (Additional file 8) suggests that
additional TNFSF-related eQTLs may have subtle effects
on disease susceptibility and lead to the observed

cumulative disease association. None of the TNFSF
eQTL SNPs have been found to be associated with BEH
by GWASs, but their cumulative association is highly
significant compared with our permuted null dataset.
This suggests that insufficient power may have pre-
vented individual variants from reaching genome-wide
significance in the original study that we re-analysed.
Such associations might reach genome-wide significance
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if larger cohorts become available. Association of the
TNFSF eQTL SNP set with BEH predicts that expres-
sion of TNFSF cytokines, receptors and signalling mole-
cules contributes to the pathogenesis of this disease
more than has been previously appreciated. Indeed, rare
variants in the NF-κB inhibitor TNFAIP3 (A20) have re-
cently been associated with a BEH-like familial disease
[75] and variants contributing to dysregulation of NF-κB
signalling may thus also contribute to the more common
form of BEH.
GWASs have identified associations between PBC

and genomic loci near LTBR/TNFRSF1A and NFKB1
(Additional file 3) [76] but the genetic associations
with the NF-κB inhibitor kinase subunits CHUK and
IKBKB that we describe here have not been previ-
ously established. Interestingly, a variant near CHUK
has been associated with plasma liver enzyme levels
[77] and these two kinases have been found to co-
ordinately protect liver bile ducts from inflammatory
destruction in mice [78]. Thus, our targeted analysis
indicates that such associations may reach genome-
wide significance with larger PBC GWASs and further
implicates the TNF/LTA pathway in PBC pathogen-
esis. In fact, evidence of the power of a targeted gene
set analysis approach to identify sub-threshold associ-
ations is already apparent within this study: eQTL
SNPs for TNFSF15 and NFKB1 did not meet genome-
wide significance in the CD [79] and UC [80] GWAS data-
sets used for re-analysis, respectively, but did contribute
to the SNP set association (Fig. 6) and were later found to
be genome-wide significant in larger studies (Additional
file 9). These data provide support for the use of such a
targeted approach to highlight potential disease-associated
genes and pathways.
Finally, we found that while the TNFSF-related SNP set

was associated with six of the eight diseases examined, the
genes contributing to association with these six diseases
often differed. This variation suggests that while the path-
way is relevant in many immune-mediated syndromes, par-
ticular branches are more influential in specific diseases,
shedding some light on their independent aetiologies.

Conclusions
We performed a targeted analysis of TNFSF cytokines,
their receptors and signalling molecules to better under-
stand their regulation and association with autoimmune
and autoinflammatory diseases. By mapping eQTLs and
using these regulatory variants in GWAS gene set ana-
lysis, we demonstrated association of TNFSF-related
genes with six of the eight immune-mediated diseases
examined. Through this hypothesis-driven approach, we
have suggested disease association of this gene set be-
yond individual variants identified in genome-wide SNP
association testing.
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