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Abstract
Background: For expression profiling to have a practical impact in the management of immune-
related disease it is essential that it can be applied to peripheral blood cells. Early studies have used
total peripheral blood mononuclear cells, and as a consequence the majority of the disease-related
signatures identified have simply reflected differences in the relative abundance of individual cell
types between patients and controls. To identify cell-specific changes in transcription it would be
necessary to profile purified leucocyte subsets.

Results: We have used sequential rounds of positive selection to isolate CD4 and CD8 T cells,
CD19 B cells, CD14 monocytes and CD16 neutrophils for microarray analysis from a single blood
sample. We compared gene expression in cells isolated in parallel using either positive or negative
selection and demonstrate that there are no significant consistent changes due to positive selection,
and that the far inferior results obtained by negative selection are largely due to reduced purity.
Finally, we demonstrate that storing cells prior to separation leads to profound changes in
expression, predominantly in cells of the myeloid lineage.

Conclusion: Leukocyte subsets should be prepared for microarray analysis by rapid positive
selection.

Background
The 'omic' revolution is starting to have a profound
impact on the investigation of complex diseases. This
technology promises a more rational approach to the
treatment of disease as a consequence of the development
of new molecular diagnostic tests. These "biomarkers"
will impact many areas of the clinical management of dis-
ease, including screening patients at risk, classifying

patients at presentation, selection of appropriate therapy,
monitoring response to treatment, and predicting relapse.

The best example of the application of this technology has
been in the field of oncology. Here, microarray-based
expression profiling has been widely employed to develop
clinically relevant molecular classifiers for many tumour
types [1-4]. These classifiers have a better prognostic per-
formance than conventional classifiers based on clinical
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parameters [5,6], and can predict both the response to
therapy [7,8], and the odds of metastasis development
[9,10]. The choice of tissue to profile is straightforward in
oncology and the whole process is greatly simplified by
the fact that tumour material is largely monoclonal. For
systemic autoimmune diseases the choice of material to
profile is less clear. From a practical perspective the best
option is to profile peripheral blood cells, an approach
that has been pursued by several groups [11-15].

In these early studies, however, the results have been con-
founded by the use of unseparated peripheral blood
mononuclear cells (PBMC), as many of the expression sig-
natures identified, as well as representing potential
changes in cell-type specific gene expression, may simply
reflect changes in the cellular constituents of blood. Per-
haps the best example of this is the "granulopoiesis" sig-
nature identified by Bennett and colleagues, which
reflected the fact that patient, but not control, PBMC sam-
ples contained significant numbers of immature granulo-
cytes [12]. In the same study the authors also
demonstrated an increase in the expression of immu-
noglobulin genes in some patients [12]. This was also
shown to be correlated with the increased number of cir-
culating plasmablasts in these patients (long known to
occur in SLE [16]) rather that a change in B cell gene tran-
scription at the cellular level.

To avoid this issue it would be preferable to profile popu-
lations of purified cells, but the conditions for performing
such cell separations and subsequent analyses are not well
established. In particular, it is unclear whether positive or
negative selection is best employed for generating purified
cells for profiling. It has long been a criticism of positive
selection that cross-linking cell surface antigens may well
result in cellular activation and altered transcription. This
has led to the marketing of negative selection kits yielding
"untouched" cells. The evidence supporting the advan-
tages of such negative selection is, however, very sparse
[17]. Moreover, no studies have directly addressed the
issue of whether specific changes in gene expression actu-
ally occur following positive selection. One recent study
that used negative selection suggested that it had little
effect on gene transcription, though they did not compare
their selection protocol to one based on positive selection
[18].

Another issue that has not been fully addressed concerns
the effect of delay in the cell preparation protocol on gene
expression. Two studies have shown that delaying the iso-
lation of PBMC from whole blood for as little as three
hours leads to significant systematic changes in gene
expression [19,20]. However, it is unclear whether these
changes are global in nature or restricted to individual cell
types.

To address these issues we have developed and optimised
a cell separation protocol utilising sequential rounds of
positive selection that enables the isolation for microarray
analysis of CD4 and CD8 T cells, CD19 B cells, CD14
monocytes and CD16 neutrophils from a single individ-
ual. We compared gene expression in cells isolated in par-
allel using either positive or negative selection, and
demonstrated that with positive selection very few genes
change in a systematic way and that the few that do can
largely be attributed to contamination, and that negative
selection is far inferior due to higher levels of contamina-
tion. Finally, we examined the effect on transcription of
storing cells prior to separation, and demonstrated that
storage leads to profound changes in expression, but only
in cells of the myeloid lineage. Thus, leucocyte subsets
should be prepared for microarray analysis by rapid posi-
tive selection.

Results
Purification and microarray analysis of leucocyte subsets
To enable the expression profiling of individual leucocyte
subsets we have developed and optimised a cell separa-
tion protocol based on sequential rounds of positive
selection using magnetic beads. Using this approach suffi-
cient quantities of CD4+ T cells, CD8+ T cells, CD19+ B
cells, CD14+ monocytes and CD16+ neutrophils can be
purified from a single individual to generate enough RNA
for microarray analyses (Table 1). Even those cell popula-
tions present at low abundance, such as CD19+ B cells
which make up less than 5% of total PBMCs, can be puri-
fied to greater than 90% purity (Table 1).

To validate the separation protocol, RNA samples
extracted from leucocyte subsets from six normal controls
were labelled and hybridised to Affymetrix U133 Plus2
GeneChips (Figure 1). Hierarchical clustering of the sam-
ples based on expression data from 12,022 genes deter-
mined to be present in all replicates of at least one cell
type clusters the samples according to cell lineage (Figure
1A). As an additional validation step we examined the
expression profiles of a panel of 39 known cell-specific
markers, comprised predominantly of CD antigens [see
Additional file 1]. Hierarchical clustering of the samples
based on the expression data of these 39 genes again clus-
tered the samples according to cell lineage, with the
expression pattern of individual CD antigens being as pre-
dicted [see Additional file 2]. For example, mRNA for
CD74, the invariant chain, is expressed highly in all
CD14+ monocyte and CD19+ B cell samples but not in any
other cell type [see Additional file 2].

As a further confirmation of cell purity the expression
level of the mRNA encoding each cell surface antigen used
for positive selection was measured across all five cell pop-
ulations (Figure 1B). With the exception of CD4, expres-
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sion of each of the mRNAs was restricted to the
appropriate cell type. In the case of CD4 mRNA, expres-
sion was observed not only in CD4+ T cells but also in
CD14+ monocytes. This is not unexpected, as monocytes
express surface CD4, but clearly suggests that for optimal
purities CD4+ T cells should be isolated from a monocyte-
depleted sample.

Moreover, cellular expression profiles from any one indi-
vidual remain stable over time. CD14+ monocyte gene
expression profiles measured in three individuals three
months apart show a strong correlation (R2 = 0.83 ± 0.06,
[see Additional file 3B]) which is of a similar magnitude
to that seen between replicates of the same sample, and
greater than that seen between samples from different
individuals (R2 = 0.83 ± 0.03 and R2 = 0.73 ± 0.06, respec-
tively, [see Additional file 3A and 3C]).

Positive selection is associated with increased cell purity
To determine whether purifying cells using positive selec-
tion has a significant impact on cellular transcription lev-
els, CD4+ and CD8+ T cells and CD14+ monocytes were
purified by either positive or negative selection in parallel.
FACS analysis of the purified cell populations showed that
in every case positive selection gave better purities than
negative selection (CD4: 95.6 ± 4.5 versus 85.1 ± 6.1%,
CD14: 95.2 ± 2.5% versus 67.3 ± 7.0%, and CD8: 93.8 ±
0.5% versus 48.5 ± 5.4% for positively and negatively
selected cells respectively, Figure 2). In the case of the neg-
atively selected samples, for all three cell types there was a
strong correlation between final purity and the relative
abundance of all three cell types in total PBMC (R2 = 0.78,
Figure 2). The implication of this is that the process of
negative selection simply results in an enrichment for,
rather than purification of, the cell type being selected.

The few expression changes associated with selection 
method can be attributed to contamination with other cell 
types
To address the question of whether positive selection
alters cellular transcription, RNA from cells isolated in
parallel using either positive or negative selection were

labelled and hybridised to our custom spotted oligonucle-
otide microarrays. As shown in Figure 3A the majority of
genes called present in all three cell types showed no evi-
dence of statistically significant differential expression.
Across the three independent CD4 separations, only 607
out of 10,515 genes (6%) called present were deemed to
be differentially expressed between the positively and neg-
atively selected samples. Similar data were obtained for
the CD8 (856 of 10,979; 8%) and CD14 (1,776 out of
13,650; 13%) separations. Strikingly, the majority of the
differentially expressed genes do not change systemati-
cally and are only seen in one out of three experiments
(Figure 3A). Relatively few genes were differentially
expressed in 2 of 3 independent experiments (CD4: 80
genes (0.7%), CD14: 264 (1.5%) and CD8: 117 (0.9%)),
and even fewer in 3 out of 3 experiments (CD4: 33 genes
(0.3%), CD14: 101 (0.9%) and CD8: 52 (0.4%)) (Figure
3A).

Of the 80 genes that show consistent differential expres-
sion in two out of the three CD4 separations, 26 were
over-expressed in the positively selected sample and 54
were over-expressed in the negatively selected sample
(Figure 3A). Comparing the expression pattern of the 26
genes over-expressed in the positively selected sample
with arrays of leucocyte subsets generated from normal
controls (see Figure 1) reveals that they are predominantly
expressed in monocytes (Figure 3B). Indeed, FACS analy-
sis of the positively selected CD4+ T cells shows a cell pop-
ulation with the forward and side scatter characteristics of
monocytes (ringed in Figure 3C). This suggested that the
over-expression of these genes simply represents contam-
ination of the positively selected CD4+ T cells with mono-
cytes rather than transcriptional activation. This problem
has subsequently been alleviated by removing the mono-
cytes prior to CD4+ T cell selection which reduces mono-
cyte contamination from 2.9 ± 0.2% to 1.0 ± 0.1% (p =
0.0005).

Similarly for the genes over-expressed in the negatively
selected CD4+ T cells, analysis of their leucocyte expres-
sion profile on control arrays suggests that this over-

Table 1: Results of cell separations and RNA extractions performed on blood samples from normal controls (n = 6).

Yield (Cell Number × 106/50 ml) Purity (%) RNA Yield (μg/50 ml blood)

CD4 T cells 9.9 ± 1.9 96.8 ± 2.7 3.61 ± 1.8
CD8 T cells 6.0 ± 1.7 87.2 ± 1.8 3.01 ± 0.7
CD14 Monocytes 6.6 ± 2.8 97.6 ± 0.7 3.43 ± 1.8
CD16 Neutrophils 126.0 ± 24.8 99.1 ± 0.1 4.37 ± 2.9
CD19 B cells 2.1 ± 1.2 91.1 ± 2.9 1.64 ± 0.6
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expression has again arisen as a consequence of contami-
nation rather than transcriptional activation (Figure 3B).
This is further supported by FACS analysis of the nega-
tively selected cells (Figure 3C).

The majority of the differentially expressed genes in CD14
and CD8 separations are over-expressed in the negatively,
rather than positively, selected cell populations (positive
vs. negative – CD14: 39 vs. 225, CD8: 9 vs. 108, Figure

Microarray analysis of purified cell populations from six normal controlsFigure 1
Microarray analysis of purified cell populations from six normal controls. (A) Hierarchical clustering of microarray 
data generated for five cell populations isolated from six normal controls was performed using expression data from 12,022 
genes and clusters samples according to cell lineage. (B) Relative expression levels of CD14, CD16, CD19, CD4 and CD8 
mRNA in each of the five cell types.
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3A). Strikingly, essentially no genes are increased by posi-
tive selection in 3 of 3 experiments (CD14: 0 vs. 101,
CD8: 1 vs. 51, Figure 3A). As with CD4 cells, FACS analy-
sis of the negatively selected cell populations together
with the leucocyte expression profile of the over-expressed
genes supports contamination rather than activation as
being the most likely explanation even for this minimal
over-expression (Figure 3B and 3C). Overall, the data for
the three cell types examined indicates that positive selec-
tion does not lead to changes in cellular gene expression
patterns, but rather that the limited number of differen-
tially expressed genes seen between positively and nega-

tively selected samples is due to contamination, and this
is much more marked in the negatively selected cells.

Delayed cell purification results in variable but significant 
transcription changes, particularly in myeloid lineages
A number of studies have demonstrated that storing
blood samples prior to isolating whole PBMC has a pro-
found effect on their gene expression profiles [19,21]. It is,
however, unclear whether this is a global response in
every cell type, or is restricted to specific cell types. To
address this question we isolated CD4+ and CD8+ T cells,
CD14+ monocytes and CD16+ neutrophils from the same

Positive selection is associated with increased cell purityFigure 2
Positive selection is associated with increased cell purity. Proportion of cell types (CD4, CD8 and CD14) in PBMC as 
assessed by flow cytometry prior to separation (yellow boxes). Purity of these cells assessed by flow cytometry following pos-
itive (red boxes) or negative (green boxes) selection.
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Differential gene expression following positive or negative selection reflects cellular contamination rather than activationFigure 3
Differential gene expression following positive or negative selection reflects cellular contamination rather than 
activation. (A) Venn diagrams showing number and overlap of statistically significant, differentially expressed genes (as defined 
in materials and methods) in each independent experiment (roman numerals). The number in the bottom right of each panel is 
the number of genes whose expression does not change with selection. Genes whose expression changes upon positive (+) or 
negative (-) selection are shown for each cell type. (B) Heat diagrams show the relative expression pattern of genes significantly 
changed in 2 out of 3 replicates in 3A on arrays of purified cell subsets from Figure 1A. Red indicates over-expression and 
green indicates under-expression. (C) Representative flow cytometry profiles for each positively and negatively purified cell 
type. Putative contaminating cell populations that correlate with the gene expression patterns observed in 3A are ringed (------).
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blood sample either immediately post venesection or fol-
lowing storage on ice for four hours. The expression pro-
files of paired samples where then compared by
microarray analysis using custom spotted oligonucleotide
arrays.

Storing blood prior to separation has no noticeable effect
on the separation process. The final purities for all four
cell subsets were not statistically different irrespective of
whether the blood was stored prior to separation or not
(data not shown). However, storage has a clear effect on
RNA levels (Figure 4).

For all four cell types the spread of the log ratio data for
freshly isolated versus stored samples was greater than
that of the appropriate self versus self hybridisation data
(Figure 4A), indicating a significant degree of differential
expression between the freshly isolated and stored sam-
ples. Analysis of the microarray data shows that for CD4+

T cells 1,043 out of 13,710 (8%), for CD8+ T cells 843 out
of 11,694 (7%), for CD14+ monocytes 3,910 out of
11,306 (35%), and for CD16+ neutrophils 6,631 out of
13,809 (48%) genes were statistically differentially
expressed between freshly isolated and stored samples in
at least one experiment (Figure 4B). The striking differ-
ence in number of differentially expressed genes observed
in cells of the myeloid lineage compared to cells of the
lymphoid lineage was maintained when only genes show-
ing consistent evidence of differential expression (signifi-
cantly different in two out three independent
experiments) were considered. In this case, 282 (2%) and
166 (1%) differentially expressed genes were seen in
CD4+ and CD8+ T cells, respectively, compared to 951
(8%) and 2,349 (17%) in CD14+ monocytes and CD16+

neutrophils, respectively (Figure 4B). Based on these
observations it is clear that delaying the cell separation
process should be avoided if possible, as even a short
delay leads to significant alterations in gene transcription.
Having said this, delaying separation is much less of an
issue if T cells are being studied, especially if the number
of samples is high since almost no genes (< 0.25%) were
systematically changed by delay in three out of three sam-
ples.

Discussion
For expression profiling to have a practical impact in the
management of immune-related diseases, as it is starting
to have in oncology, it is essential that it can be applied to
peripheral blood cells. Early studies, particularly in SLE,
have used total PBMC, and as a consequence the majority
of the disease-related signatures identified have simply
reflected differences in the relative abundance of individ-
ual cell types between patients with disease and controls
[12]. To avoid this, and to identify genuine cell specific

signatures, is necessary to profile purified leucocyte sub-
sets. However, protocols for doing so are not established.

From a practical perspective the most straightforward
approach would be to use sequential rounds of positive
selection to isolate individual cell subsets. A critical ques-
tion that has not been addressed is what effect, if any, the
process of positive selection has on cellular transcription
profiles. A number of studies have demonstrated that pos-
itive selection using magnetic beads appears to have a
minimal effect on the activation status of the isolated
cells, however none have looked in a systematic manner
at gene expression [17,22-26].

To address this we have compared gene expression pro-
files in CD4+ and CD8+ T cells and CD14+ monocytes iso-
lated by either positive or negative selection. For all three
subsets there was no evidence that cross-linking CD4,
CD8 or CD14 during the selection process led to wide-
spread changes in gene expression. While on any individ-
ual array there was a degree of noise, across all the arrays
for each cell type there were very few systematic changes.
In each case, the majority of genes that showed a consist-
ent change had a higher level of expression in the nega-
tively selected population. While it is possible that these
changes are due to downregulation of the transcription of
these genes in the positively selected population, analysis
of their expression pattern across a panel of purified leu-
cocyte subsets from a cohort of normal individuals
strongly suggests that the elevated expression is due to
contamination of the negatively selected population with
other cell types. This conclusion is supported by FACS
analysis of the negatively selected cell populations which
show the presence of contaminating cell types consistent
with the expression data.

Contamination of the positively selected cells was only an
issue for one cell type, namely the CD4+ T cells, which
consistently contained low levels of CD14+ monocytes.
This is simply a consequence of the expression of CD4 by
monocytes, and can be efficiently eliminated by carrying
out the CD4 selection on CD14-depleted PBMC. In a
recent study Du and colleagues used negative selection to
isolate individual cell subsets from peripheral blood, and
identified 269 probe sets that were significantly differen-
tially expressed between the cell subsets in their study
[18]. An identical analysis of our own data (parametric
analysis of variance, p < 0.05 with Bonferroni correction
followed by a Student-Newman-Keuls post-hoc test) iden-
tified 2,641 probe sets [see Additional file 4] that are dif-
ferentially expressed between CD4+ and CD8+ T cells,
CD19+ B cells, CD14+ monocytes and CD16+ neutrophils.
The 269 probe sets identified by Du et al represent 195
unique genes of which 141 would differentiate the cell
types analysed in our study (as we did not isolate natural
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Delaying separation leads to significant changes in gene expression especially in cells of the myeloid lineageFigure 4
Delaying separation leads to significant changes in gene expression especially in cells of the myeloid lineage. 
Expression profiles were obtained from RNA samples extracted from cells separated immediately following venesection com-
pared to those separated after a four hour delay on ice. Box plots (A) show the change in gene expression between 0 and 4 
hours for independent experiments (I – III) and combined self versus self hybridisation data. The Venn diagrams (B) show the 
number and overlap between genes showing statistically significant differential expression (as defined in the materials and meth-
ods).
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killer cells or platelets). Of these 141 genes, 94 are also
identified by our analysis, and a further 36 show the cor-
rect differential expression pattern although it fails to
reach statistical significance using the conservative Bon-
ferroni correction for multiple testing. The high degree of
similarity between the two studies, despite the different
purification strategies, further support the suggestion that
positive selection does not lead to significant alterations
in gene expression. On the basis of these observations it is
clear that positive selection is preferable to negative selec-
tion for generating cells for microarray analysis as it yields
higher cell purities and negligible changes in gene expres-
sion.

Another issue that could potentially confound microarray
analysis is variation introduced during the blood han-
dling process, and in particular as a consequence of delays
prior to cell separation. Two studies have shown that even
short delays between blood being taken and the separa-
tion process starting leads to significant systematic varia-
tion in gene expression in unseparated PBMC [19,20]. In
this study we have extended these observations to look at
the effect of delaying cell separation on gene expression in
individual purified cell types. It is clear from the data that
even a short delay in processing the blood sample results
in significant changes in gene expression in cells of the
myeloid lineage. However, this is not a practical problem
when looking at cells of the T cell lineage, especially where
large sample numbers are available, as the number of
genes showing a systematic change in expression is negli-
gible.

Conclusion
On the basis of these findings the use of positive selection
has no adverse influence on cellular transcription, at least
for the antibody-receptor combinations examined. Thus,
for microarray analysis of purified cell subsets where high
purity is essential it may be preferable to use positive
rather than negative selection. In addition, delay in the
selection process should be minimised and standardized,
especially if myeloid cells are to be studied.

Methods
Cell Separations
Blood samples (100 ml) were collected into 4% sodium
citrate. Within 15 min of collection the blood was diluted
1:2 with MACS rinsing buffer (1× phosphate buffered
saline (PBS), 2 mM EDTA) and centrifuged on Histo-
paque 1077 (Sigma) at 900 g for 20 min at room temper-
ature. Following centrifugation, the PBMC at the interface
were removed, washed twice with MACS rinsing buffer,
and then resuspended in 50 ml MACS running buffer (1×
PBS, 2 mM EDTA, 0.5% BSA).

Positive selection
The PBMC sample was split into two aliquots and CD14
monocytes were isolated from one aliquot and CD19 B
cells from the other by magnetic cell sorting using CD14
and CD19 microbeads (Miltenyi Biotec) according to the
manufacturer's instructions. CD4 and CD8 T cells were
then isolated from the CD14 and CD19 negative frac-
tions, respectively, by magnetic cell sorting using CD4 and
CD8 microbeads as described by the manufacturer. The
positive selection protocol as outlined takes less than 5
hours from time of blood collection to RNA extraction.

CD16 neutrophils were obtained as follows. Following
centrifugation on Histopaque 1077 the red cell/granulo-
cyte pellet was incubated with red cell lysis buffer (155
mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA) on ice for
30 min. Following red cell lysis the granulocytes were
recovered by centrifugation, washed with MACS rinsing
buffer, and then resuspended in 50 ml MACS running
buffer. Neutrophils were then isolated by magnetic cell
sorting using CD16 microbeads as described by the man-
ufacturer.

Negative selection
"Untouched" CD4 and CD8 T cells and CD14 monocytes
were purified from PBMC by negative selection using CD4
T cell, CD8 T cell and monocyte isolation kits (Miltenyi
Biotec) according to the manufacturer's instructions.
Briefly, PBMC were resuspended in MACS running buffer
at 2 × 108 cells/ml and labelled with the appropriate neg-
ative selection biotin-antibody cocktail for 10 min at 4–
8°C. Labelled cells were then diluted to 1 × 108 cells/ml in
MACS running buffer and incubated with anti-biotin
microbeads for an additional 15 min at 4–8°C. The cells
were then washed and resuspended in 500 μl MACS run-
ning buffer prior to magnetic cell sorting using an autoM-
ACS (Miltenyi Biotech).

Antibodies and FACS analysis
Cell purities pre- and post-separation were measured by
flow cytometry using a FACSCalibur (BD Biosciences).
FITC-labelled anti-CD4, anti-CD15 and anti-CD20, PE-
labelled anti-CD3, anti-CD14, anti-CD19 and anti-CD16,
and APC-labelled anti-CD8 monoclonal antibodies were
purchased from BD Biosciences.

RNA extraction, labelling and microarray hybridisation
RNA was extracted using RNEasy mini kits (Qiagen)
according to the manufacturer's instructions. RNA quality
was assessed using an Agilent Bioanalyser 2100 and quan-
tified by spectrophotometry using a NanoDrop ND-1000
spectrophotometer.

Custom microarrays were printed at the Centre for Micro-
array Resources, Department of Pathology, University of
Page 9 of 12
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Cambridge using 50 mer olignucleotide probes represent-
ing 25,342 genes and control probes [27]. For microarray
hybridisations, 250 ng of total RNA was converted into
double stranded cDNA and then 100 ng of cDNA was ran-
dom prime labelled with either Cy3-dCTP or Cy5-dCTP as
described [28]. Appropriate Cy3- and Cy5-labelled targets
were pooled, precipitated and resuspended in 250 μl
hybridisation buffer (40% formamide, 5× SSC, 5× Den-
hardt's solution, 1 mM sodium pyrophosphate, 50 mM
Tris pH 7.4, 0.1% SDS). Pooled targets were denatured at
95°C for 5 min, incubated at 50°C for 5 min, centrifuged
at 13,000 rpm for 5 min, and then hybridised to custom
spotted oligonucleotide microarrays at 42°C for 16 h on
a Lucidea SlidePro hybridisation station (GE Healthcare).
Following hybridisation arrays were washed at room tem-
perature in 1× SSC/0.2% SDS for 5 min, 1× SSC for 5 min,
and 0.1× SSC for 5 min, and then dried by centrifugation
at 500 g for 2 min. Arrays were scanned at 10 micron res-
olution using an Agilent G2565B scanner.

Microarray data analysis
Raw image data was extracted using Koadarray v2.4 soft-
ware (Koada Technology), probes were called present if
they had a spot confidence value > 0.3 in at least one
channel. Background subtracted intensity values for all
probes considered present were imported into R where
within-print-tip Lowess normalisation and the identifica-
tion of statistically significant, differential gene expression
was performed using the LIMMA library in the Bioconduc-
tor software package [29]. To correct for multiple testing
p-values were adjusted using the method of Benjamini
and Hochberg by setting the false discovery rate to 10%
[30].

Affymetrix analysis
For hybridisation to Affymetrix GeneChips 100 ng of total
RNA was converted into double-stranded cDNA using the
SMART cDNA synthesis kit (Clontech) except that a T7 tag
was added to the primer used for first strand cDNA syn-
thesis. Biotin-labelled cRNA was generated, fragmented,
and hybridised onto Affymetrix Human Genome U133
Plus 2 arrays according to the manufacturer's instructions.
Following hybridisation and washing, the arrays were
scanned using a GeneChip Scanner 3000. Raw data files
were imported into GeneSpring v7.2 and RMA normal-
ized [31] prior to further analysis. Genes were called
present if they had a signal intensity greater than 150 flu-
orescence units following normalization. Hierarchical
clustering of the RMA normalized Affymetrix data was car-
ried out in GeneSpring using the Pearson correlation as
the measure of similarity.

Abbreviations
SLE: Systemic lupus erythematosus

PBMC: Peripheral blood mononuclear cells

FACS: Fluorescence-activated cell sorting
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Additional file 1
Cell type specific gene list. This gene list was used as the basis for the hier-
archical clustering shown in Additional file 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-64-S1.xls]

Additional file 2
Hierarchical clustering of purified cell samples on the basis of CD antigen 
expression groups samples by cell lineage. Hierarchical clustering using 
expression data from 39 genes was performed using the Pearson correla-
tion as the measure of similarity.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-64-S2.ppt]

Additional file 3
RNA samples extracted from the same individual over time show stable 
expression profiles. (A) Representative plot showing the correlation 
between array data from independent labellings of the same CD14 mono-
cyte RNA sample. (B) Representative plot showing the correlation between 
array data from CD14 monocyte RNA samples extracted from the same 
individual 3 months apart. (C) Representative plot showing the correla-
tion between array data for CD14 monocyte RNA samples extracted from 
different individuals. In each case mean ± SD R2 values are shown. All 
samples were hybridised to spotted oligonucleotide microarrays comprised 
of probes representing 25,342 known genes or control elements.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-64-S3.ppt]

Additional file 4
Genes showing cell type specific expression patterns. Statistical analysis of 
the microarray dataset shown in Figure 1 (parametric analysis of vari-
ance, p < 0.05 with Bonferroni correction followed by a Student-New-
man-Keuls post-hoc test) identified 2,641 probe sets that are differentially 
expressed between CD4+ and CD8+ T cells, CD19+ B cells, CD14+ mono-
cytes and CD16+ neutrophils.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-64-S4.xls]
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