20,227 research outputs found

    Towards an HH-theorem for granular gases

    Get PDF
    The HH-theorem, originally derived at the level of Boltzmann non-linear kinetic equation for a dilute gas undergoing elastic collisions, strongly constrains the velocity distribution of the gas to evolve irreversibly towards equilibrium. As such, the theorem could not be generalized to account for dissipative systems: the conservative nature of collisions is an essential ingredient in the standard derivation. For a dissipative gas of grains, we construct here a simple functional H\mathcal H related to the original HH, that can be qualified as a Lyapunov functional. It is positive, and results backed by three independent simulation approaches (a deterministic spectral method, the stochastic Direct Simulation Monte Carlo technique, and Molecular Dynamics) indicate that it is also non-increasing. Both driven and unforced cases are investigated

    The Simple Non-degenerate Relativistic Gas: Statistical Properties and Brownian Motion

    Full text link
    This paper shows a novel calculation of the mean square displacement of a classical Brownian particle in a relativistic thermal bath. The result is compared with the expressions obtained by other authors. Also, the thermodynamic properties of a non-degenerate simple relativistic gas are reviewed in terms of a treatment performed in velocity space.Comment: 6 pages, 2 figure

    Monolithic integration of Giant Magnetoresistance (GMR) devices onto standard processed CMOS dies

    Get PDF
    Giant Magnetoresistance (GMR) based technology is nowadays the preferred option for low magnetic fields sensing in disciplines such as biotechnology or microelectronics. Their compatibility with standard CMOS processes is currently investigated as a key point for the development of novel applications, requiring compact electronic readout. In this paper, such compatibility has been experimentally studied with two particular non-dedicated CMOS standards: 0.35 μm from AMS (Austria MicroSystems) and 2.5 μm from CNM (Centre Nacional de Microelectrònica, Barcelona) as representative examples. GMR test devices have been designed and fabricated onto processed chips from both technologies. In order to evaluate so obtained devices, an extended characterization has been carried out including DC magnetic measurements and noise analysis. Moreover, a 2D-FEM (Finite Element Method) model, including the dependence of the GMR device resistance with the magnetic field, has been also developed and simulated. Its potential use as electric current sensors at the integrated circuit level has also been demonstrated

    Giant magnetic anisotropy at nanoscale: overcoming the superparamagnetic limit

    Get PDF
    It has been recently observed for palladium and gold nanoparticles, that the magnetic moment at constant applied field does not change with temperature over the range comprised between 5 and 300 K. These samples with size smaller than 2.5 nm exhibit remanence up to room temperature. The permanent magnetism for so small samples up to so high temperatures has been explained as due to blocking of local magnetic moment by giant magnetic anisotropies. In this report we show, by analysing the anisotropy of thiol capped gold films, that the orbital momentum induced at the surface conduction electrons is crucial to understand the observed giant anisotropy. The orbital motion is driven by localised charge and/or spin through spin orbit interaction, that reaches extremely high values at the surfaces. The induced orbital moment gives rise to an effective field of the order of 103 T that is responsible of the giant anisotropy.Comment: 15 pages, 2 figures, submitted to PR

    Robust plasmon waveguides in strongly-interacting nanowire arrays

    Full text link
    Arrays of parallel metallic nanowires are shown to provide a tunable, robust, and versatile platform for plasmon interconnects, including high-curvature turns with minimum signal loss. The proposed guiding mechanism relies on gap plasmons existing in the region between adjacent nanowires of dimers and multi-wire arrays. We focus on square and circular silver nanowires in silica, for which excellent agreement between both boundary element method and multiple multipolar expansion calculations is obtained. Our work provides the tools for designing plasmon-based interconnects and achieving high degree of integration with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure

    Symbiotic Solitons in Heteronuclear Multicomponent Bose-Einstein condensates

    Full text link
    We show that bright solitons exist in quasi-one dimensional heteronuclear multicomponent Bose-Einstein condensates with repulsive self-interaction and attractive inter-species interaction. They are remarkably robust to perturbations of initial data and collisions and can be generated by the mechanism of modulational instability. Some possibilities for control and the behavior of the system in three dimensions are also discussed

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    Alpha-decay Rates of Yb and Gd in Solar Neutrino Detectors

    Full text link
    The α\alpha-decay rates for the nuclides 168,170,171,172,173,174,176^{168,170,171,172,173,174,176}Yb and 148,150,152,154^{148,150,152,154}Gd have been estimated from transmission probabilities in a systematic α\alpha-nucleus potential and from an improved fit to α\alpha-decay rates in the rare-earth mass region. Whereas α{\alpha}-decay of 152^{152}Gd in natural gadolinium is a severe obstacle for the use of gadolinium as a low-energy solar-neutrino detector, we show that α{\alpha}-decay does not contribute significantly to the background in a ytterbium detector. An extremely long α{\alpha}-decay lifetime of 168^{168}Yb is obtained from calculation, which may be close to the sensitivity limit in a low-background solar neutrino detector.Comment: 12 pages, 1 figure; An author name was correcte

    Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002707. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] A technique for the development of low-cost and high-sensitivity photonic biosensing devices is proposed and experimentally demonstrated. In this technique, a photonic bandgap structure is used as transducer, but its readout is performed by simply using a broadband source, an optical filter, and a power meter, without the need of obtaining the transmission spectrum of the structure; thus, a really low-cost system and real-time results are achieved. Experimental results show that it is possible to detect very low refractive index variations, achieving a detection limit below 2 x 10(-6) refractive index units using this low-cost measuring technique. (C) 2011 Optical Society of America[This work was funded by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under contracts TEC2008-06333, JCI-009-5805, and TEC2008-05490. Support by the Universidad Politecnica de Valencia through program PAID-06-09 and the Conselleria d'Educacio through program GV-2010-031 is acknowledged.García Castelló, J.; Toccafondo, V.; Pérez Millán, P.; Sánchez Losilla, N.; Cruz, JL.; Andres, MV.; García-Rupérez, J. (2011). Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures. Optics Letters. 36(14):2707-2709. https://doi.org/10.1364/OL.36.002707S270727093614Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2), 3-15. doi:10.1016/s0925-4005(98)00321-9Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., & Baets, R. (2007). Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 15(12), 7610. doi:10.1364/oe.15.007610Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510Xu, D.-X., Vachon, M., Densmore, A., Ma, R., Delâge, A., Janz, S., … Schmid, J. H. (2010). Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach. Optics Letters, 35(16), 2771. doi:10.1364/ol.35.002771Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169Lee, M. R., & Fauchet, P. M. (2007). Nanoscale microcavity sensor for single particle detection. Optics Letters, 32(22), 3284. doi:10.1364/ol.32.003284García-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276Toccafondo, V., García-Rupérez, J., Bañuls, M. J., Griol, A., Castelló, J. G., Peransi-Llopis, S., & Maquieira, A. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673. doi:10.1364/ol.35.003673Luff, B. J., Wilson, R., Schiffrin, D. J., Harris, R. D., & Wilkinson, J. S. (1996). Integrated-optical directional coupler biosensor. Optics Letters, 21(8), 618. doi:10.1364/ol.21.000618Sepúlveda, B., Río, J. S. del, Moreno, M., Blanco, F. J., Mayora, K., Domínguez, C., & Lechuga, L. M. (2006). Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 8(7), S561-S566. doi:10.1088/1464-4258/8/7/s41Densmore, A., Vachon, M., Xu, D.-X., Janz, S., Ma, R., Li, Y.-H., … Schmid, J. H. (2009). Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Optics Letters, 34(23), 3598. doi:10.1364/ol.34.003598Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146Pérez-Millán, P., Torres-Peiró, S., Cruz, J. L., & Andrés, M. V. (2008). Fabrication of chirped fiber Bragg gratings by simple combination of stretching movements. Optical Fiber Technology, 14(1), 49-53. doi:10.1016/j.yofte.2007.07.00
    corecore