3,022 research outputs found

    Two-form supergravity, superstring couplings, and Goldstino superfields in three dimensions

    Full text link
    We develop off-shell formulations for N=1{\cal N}=1 and N=2{\cal N}=2 anti-de Sitter supergravity theories in three spacetime dimensions that contain gauge two-forms in the auxiliary field sector. These formulations are shown to allow consistent couplings of supergravity to the Green-Schwarz superstring with N=1{\cal N}=1 or N=2{\cal N}=2 spacetime supersymmetry. In addition to being Îş\kappa-symmetric, the Green-Schwarz superstring actions constructed are also invariant under super-Weyl transformations of the target space. We also present a detailed study of models for spontaneously broken local supersymmetry in three dimensions obtained by coupling the known off-shell N=1{\cal N}=1 and N=2{\cal N}=2 supergravity theories to nilpotent Goldstino superfields.Comment: 63 pages; V2: minor correction

    An inefficient dwarf: Chemical abundances and the evolution of the Ursa Minor dwarf spheroidal galaxy

    Full text link
    We present detailed chemical element abundance ratios of 17 elements in three metal poor stars in the Ursa Minor dwarf spheroidal galaxy, which we combine with extant data from the literature to assess the predictions of a novel suite of galaxy chemical evolution models. The spectroscopic data were obtained with the Keck/HIRES instrument and revealed low metallicities of [Fe/H]=-2.12, -2.13 and -2.67 dex. While the most metal poor star in our sample shows an overabundance of [Mn/Fe] and other Fe-peak elements, our overall findings are in agreement with previous studies of this galaxy: elevated values of the [alpha/Fe] ratios that are similar to, or only slightly lower than, the halo values but with SN Ia enrichment at very low metallicity, as well as an enhancement of the ratio of first to second peak neutron capture elements [Y/Ba] with decreasing metallicity. The chemical evolution models which were tailored to reproduce the metallicity distribution function of the dSph, indicate that UMi had an extended star formation which lasted nearly 5 Gyr with low efficiency and are able to explain the [Y/Ba] enhancement at low metallicity for the first time. In particular, we show that the present day lack of gas is probably due to continuous loss of gas from the system, which we model as winds.Comment: 10 pages, 7 figures, table

    On the RKKY range function of a one dimensional non interacting electron gas

    Get PDF
    We show that the pitfalls encountered in earlier calculations of the RKKY range function for a non interacting one dimensional electron gas at zero temperature can be unraveled and successfully dealt with through a proper handling of the impurity potential.Comment: to appear in Phys. Re

    LTE or non-LTE, that is the question

    Full text link
    Strontium has proven itself to be one of the most important neutron-capture elements in the study of metal-poor stars. Thanks to the strong absorption lines of Sr, they can be detected even in the most metal-poor stars and also in low-resolution spectra. However, we still cannot explain the large star-to-star abundance scatter we derive for metal-poor stars. Here we contrast Galactic chemical evolution (GCE) with improved abundances for SrI+II including updated atomic data, to evaluate possible explanations for the large star-to-star scatter at low metallicities. We derive abundances under both local thermodynamic equilibrium (LTE) and non-LTE (NLTE) for stars spanning a large interval of stellar parameters. Gravities and metallicities are also determined in NLTE. We confirm that the ionisation equilibrium between SrI and SrII is satisfied under NLTE but not LTE, where the difference between SrI and SrII is on average ~0.3dex. We show that the NLTE corrections are of increasing importance as the metallicity decreases. For the stars with [Fe/H]>-3 the SrI NLTE correction is ~0.35/0.55dex in dwarfs/giants, while the Sr II NLTE correction is +/-0.05dex. On the basis of the large NLTE corrections, SrI should not be applied as a chemical tracer under LTE, while it is a good tracer under NLTE. SrII is a good tracer under both LTE and NLTE (down to [Fe/H]\sim -3), and LTE is a safe assumption for this majority species. However, the Sr abundance from SrII lines is dependent on an accurate surface gravity determination, which can be obtained from NLTE spectroscopy of Fe lines or from parallax measurements. We could not explain the star-to-star scatter (which remains under both LTE and NLTE) by the use of the GCE model, since the Sr yields to date are too uncertain to draw firm conclusions. At least two production sites seem necessary in order to account for this large scatter (abridged).Comment: 14 pages, 12 figures and one online table (accepted by A&A

    A Simple Nonlinearity-Tailored Probabilistic Shaping Distribution for Square QAM

    Get PDF
    A new probabilistic shaping distribution that outperforms Maxwell-Boltzmann is studied for the nonlinear fiber channel. Additional gains of 0.1 bit/symbol MI or 0.2 dB SNR for both DP-256QAM and DP-1024QAM are reported after 200 km nonlinear fiber transmission

    Safety Assessment of Vitamin D and Its Photo-Isomers in UV-Irradiated Baker’s Yeast

    Get PDF
    Vitamin D deficiency due to, e.g., nutritional and life style reasons is a health concern that is gaining increasing attention over the last two decades. Vitamin D3, the most common isoform of vitamin D, is only available in food derived from animal sources. However, mushrooms and yeast are rich in ergosterol. This compound can be converted into vitamin D2 by UV-light, and therefore act as a precursor for vitamin D. Vitamin D2 from UV-irradiated mushrooms has become an alternative source of vitamin D, especially for persons pursuing a vegan diet. UV-irradiated baker’s yeast (Saccharomyces cerevisiae) for the production of fortified yeast-leavened bread and baked goods was approved as a Novel Food Ingredient in the European Union, according to Regulation (EC) No. 258/97. The Scientific Opinion provided by the European Food Safety Authority Panel on Dietetic Products, Nutrition, and Allergies has assessed this Novel Food Ingredient as safe under the intended nutritional use. However, recent findings on the formation of side products during UV-irradiation, e.g., the photoproducts tachysterol and lumisterol which are compounds with no adequate risk assessment performed, have only been marginally considered for this EFSA opinion. Furthermore, proceedings in analytics can provide additional insights, which might open up new perspectives, also regarding the bioavailability and potential health benefits of vitamin D-fortified mushrooms and yeast. Therefore, this review is intended to give an overview on the current status of UV irradiation in mushrooms and yeast in general and provide a detailed assessment on the potential health effects of UV-irradiated baker’s yeast

    The Indian-Atlantic Ocean gateway during the Pliocene: current dynamics and changing sediment provenance

    Get PDF
    The Pliocene epoch represents a discrete interval which reversed a long-term trend of late Neogene cooling and is also the most recent geological interval in which global temperatures were several degrees warmer than today. It is therefore often considered as the best analogue for a future anthropogenic greenhouse world. However, there is growing evidence that the Pliocene was not a stable period but can rather be subdivided in several distinct climate phases. Our understanding of Pliocene climate variability in the Southern Hemisphere, and especially in the Atlantic-Indian ocean gateway, is limited by scarce marine records and poor age control on existing terrestrial climate archives. At five drilling locations IODP Exp. 361 recovered high resolution complete late Miocene to Pleistocene sections (Hall et al., 2017). Our research proposal is based on the Sites U1474 (Natal Valley), U1475 (Agulhas Plateau), and U1479 (Cape Basin) forming a latitudinal transect. The main focus is on the interplay between northern and southern sourced deep water masses in the Atlantic-/Indian Ocean gateway during the Pliocene and combines chemical, physical property and seismic methods. Our research is driven by three working hypotheses: Seismic stratigraphies for the last 6 Ma and sediment drift growth in the Atlantic-Indian gateway are mainly controlled by bottom water flow changes Using the sediment archives and physical property records from IODP Exp. 361 we aim to construct and compare detailed seismic stratigraphies for the Agulhas Plateau, the Natal valley and the Cape basin for the last 6 Ma. At all Exp. 361 sites P-wave velocity and density records enable detailed correlations of drilling results and site survey data through the calculation of synthetic seismograms. Our working hypothesis implies that seismic reflection patterns and sediment accumulation during the Pliocene are closely linked to deep water circulation changes associated with climate Pliocene phases. Furthermore four distinct high latitude Pliocene glaciation events have been identified. We speculate that these phases and events have led to deep water circulation changes in Agulhas region, have altered the sediment physical properties and thus may be recognized as reflectors in the seismic profiles. How did the sediment input of terrigenous vs. biogenic sediment components in the gateway change during these events? Are these changes driven by dilution, dissolution, or productivity? We strive to answer these questions by interpreting edited and in-situ corrected physical core scanning records in combination major element variabilty derived from post cruise XRF-scanning. Trajectories and intensities of deep water masses in the Agulhas region during the Pliocene were influenced by Antarctic ice volume rather then by the closure of the Central American Seaway. The Exp. 361 drill sites offer the possibility to inter-correlate different flow speed proxies and to derive a detailed picture of flow changes during the Pliocene. By comparing core-measurements of sortable silt (S̅S̅), physical properties and XRF-core scanning data with seismic features we will tie the major flow speed changes to our seismic grid covering the Agulhas Plateau such that changing current intensities and pathways can be mapped together. Here we hypothesize that these changes are mainly driven by climate (Antarctic ice volume). How have the sedimentation patterns changed under the growing influence of North Atlantic Deep Water (NADW) during the Pliocene? What were the main changes associated with the instability of Antarctic ice sheets and was the production of Antartic Bottom Water (AABW) reduced or enhanced during these intervals? Was there also a potential influence of tectonic processes on the flow changes in the Agulhas region? Especially the closure of the Centarl American Seaway (CAS) in various phases between ~14 and ~2.7 Ma is thought to have had a profound impact on climate. Changes in physical and chemical sediment properties in the Agulhas region are largely controlled by earth’s orbital variations and allow a significant improvement of age models by cyclostratigraphy. Another primary objective of our research is the detection and characterization of orbital and sub-orbital cycles in the Agulhas sedimentary environment in relation to paleoceanographic changes. The presence of orbital cycles in ocean sediments has widely been used to derive high resolution age models in Cenozoic sediments. Typically orbital chronologies are based on benthic oxygen isotope records (δ18O) that are correlated to astronomical forcing functions (“orbital tuning”). However, the generation of such records at high resolution over long time intervals is time consuming and will likely not be completed for the Exp. 361 sites over the next years. In the absence of δ18O records cyclic changes in high resolution measurements of physical (e.g. density, colour reflectance, magnetic susceptibility) and chemical (major elements from XRF core scanning) parameters have been successfully used for orbital tuning. At the Exp. 361 Sites very regular cyclic amplitude changes are evident in the Pliocene sections, but up to now have not been further investigated. Which orbital frequency do these cycles represent and how do the dominent frequencies change over time? What is the potential of the observed cycles for stratigraphic purposes? We will analyse those cyclicities in the depth and time domain and strive to generate orbitally tuned time series of sediment provenance
    • …
    corecore