212 research outputs found

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Improving the assessment of transferable skills in chemistry through evaluation of current practice

    Get PDF
    The development and assessment of transferable skills acquired by students, such as communication and teamwork, within undergraduate degrees is being increas-ingly emphasised. Many instructors have designed and implemented assessment tasks with the aim to provide students with opportunities to acquire and demon-strate these skills. We have now applied our previously published tool to evaluate whether assessment tasks allow students to demonstrate achievement of these transferable skills. The tool allows detailed evaluation of the alignment of any as-sessment item against the claimed set of learning outcomes. We present here two examples in which use of the tool provides evidence for the level of achievement of transferable skills and a further example of use of the tool to inform curricu-lum design and pedagogy, with the goal of increasing achievement of communi-cation and teamwork bench marks. Implications for practice in assessment design for learning are presented

    Variable, but not free-weight, resistance back squat exercise potentiates jump performance following a comprehensive task-specific warm-up

    Get PDF
    Studies examining acute, high-speed movement performance enhancement following intense muscular contractions (frequently called "post-activation potentiation"; PAP) often impose a limited warm-up, compromizing external validity. In the present study, the effects on countermovement vertical jump (CMJ) performance of back squat exercises performed with or without elastic bands during warm-up were compared. After familiarization, fifteen active men visited the laboratory on two occasions under randomized, counterbalanced experimental squat warm-up conditions: (a) free-weight resistance (FWR) and (b) variable resistance (VR). After completing a comprehensive task-specific warm-up, three maximal CMJs were performed followed by three back squat repetitions completed at 85% of 1-RM using either FWR or VR Three CMJs were then performed 30 seconds, 4 minutes, 8 minutes, and 12 minutes later. During CMJ trials, hip, knee, and ankle joint kinematics, ground reaction force data and vastus medialis, vastus lateralis, and gluteus maximus electromyograms (EMG) were recorded simultaneously using 3D motion analysis, force platform, and EMG techniques, respectively. No change in any variable occurred after FWR (P > 0.05). Significant increases (P < 0.05) were detected at all time points following VR in CMJ height (5.3%-6.5%), peak power (4.4%-5.9%), rate of force development (12.9%-19.1%), peak concentric knee angular velocity (3.1%-4.1%), and mean concentric vastus lateralis EMG activity (27.5%-33.4%). The lack of effect of the free-weight conditioning contractions suggests that the comprehensive task-specific warm-up routine mitigated any further performance augmentation. However, the improved CMJ performance following the use of elastic bands is indicative that specific alterations in force-time properties of warm-up exercises may further improve performance

    X-ray Absorption and Reflection in Active Galactic Nuclei

    Full text link
    X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei, and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies > 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58 pages, 9 figures. V2 has fixed an error in footnote

    Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence

    Get PDF
    Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms

    Racial/ethnic and sexual behavior disparities in rates of sexually transmitted infections, San Francisco, 1999-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Racial/ethnic minorities and men who have sex with men (MSM) represent populations with disparate sexually transmitted infection (STI) rates. While race-specific STI rates have been widely reported, STI rates among MSM is often challenging given the absence of MSM population estimates. We evaluated the race-specific rates of chlamydia and gonorrhea among MSM and non-MSM in San Francisco between 1999-2008.</p> <p>Methods</p> <p>2000 US Census data for San Francisco was used to estimate the number of African-American, Asian/Pacific Islander, Hispanic, and white males. Data from National HIV Behavioral Surveillance (NHBS) MSM 1, conducted in 2004, was used to estimate the total number of MSM in San Francisco and the size of race/ethnic sub-populations of MSM. Non-MSM estimates were calculated by subtracting the number of estimated MSM from the total number of males residing in San Francisco. Rates of MSM and non-MSM gonorrhea and chlamydia reported between 1999 and 2008 were stratified by race/ethnicity. Ratios of MSM and non-MSM rates of morbidity were calculated by race/ethnicity.</p> <p>Results</p> <p>Between 1999-2008, MSM accounted for 72% of gonorrhea cases and 51% of chlamydia cases. Throughout the study period, African-American MSM had the highest chlamydia rate with 606 cases per 100,000 in 1999 increasing to 2067 cases per 100,000 in 2008. Asian/Pacific Islander MSM consistently had the lowest rate among MSM with1003 cases per 100,000 in 2008. The ratio of MSM/non-MSM for chlamydia was highest among whites 11.6 (95% CI: 8.8-14.4) and Asian/Pacific Islanders 8.6 (95% CI: 6.2-11), and lowest among African-Americans 1.53 (95% CI: 1.2-1.9) and Hispanics 4.43 (95% CI: 2.8-6.0). Gonorrhea rates were similar for African-American, white, and Hispanic MSM between 2137-2441 cases per 100,000 in 2008. Asian/Pacific Islander MSM had the lowest gonorrhea rate with 865 cases per 100,000 in 2008. The ratio of MSM/non-MSM for gonorrhea was highest among whites 11.6 (95% CI: 8.8-14.4) and Asian/Pacific Islanders 8.6 (95% CI: 6.2-11), and lowest among African-Americans 1.53 (95% CI: 1.2-1.9) and Hispanics 4.43 (95% CI: 2.8-6.0).</p> <p>Conclusions</p> <p>For all racial/ethnic groups in San Francisco, MSM carried a substantially higher burden of STIs compared to non-MSM except among African-American men. These racial and sexual behavior disparities warrant further public health attention and resources.</p

    Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle.</p> <p>Methods</p> <p>An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters.</p> <p>Results</p> <p>Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the model accounted for ~86% and ~85% of the variances in the measured force-time integrals and peak forces, respectively.</p> <p>Conclusion</p> <p>The range of predictive abilities of the isovelocity model in response to changes in muscle length, velocity, and stimulation frequency for each individual make it ideal for dynamic applications like FES cycling.</p

    Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study

    Get PDF
    High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the “selfish operon” hypothesis for maintenance of gene clusters

    Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    Get PDF
    Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs.). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes.Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes
    corecore