766,281 research outputs found

    Alcohol-related expectancies are associated with the D2 dopamine receptor and GABAa receptor B3 subunit genes

    Get PDF
    Molecular genetic research has identified promising markers of alcohol dependence, including alleles of the D2 dopamine receptor (DRD2) and the GABAA receptor ï¿¢3 subunit (GABRB3) genes. Whether such genetic risk manifests itself in stronger alcohol-related outcome expectancies, or in difficulty resisting alcohol, is unknown. In the present study, A1+ (A1A1 and A1A2 genotypes) and A1- (A2A2 genotype) alleles of the DRD2 and G1+ (G1G1 and G1 non-G1 genotypes) and G1- (non-G1 non-G1 genotype) alleles of the GABRB3 were determined in a group of 56 medically-ill patients diagnosed with alcohol dependence. Mood-related Alcohol Expectancy (AE) and Drinking Refusal Self-Efficacy (DRSE) were assessed using the Drinking Expectancy Profile (Young and Oei, 1996). Patients with the DRD2 A1+ allele, compared to those with the DRD2 A1- allele, reported lower DRSE in situations of social pressure (p=. 009). Similarly, lower DRSE was reported under social pressure by patients with the GABRB3 G1+ allele when compared to those with the GABRB3 G1- allele (p=.027). Patients with the GABRB3 G1+ allele also revealed reduced DRSE in situations characterized by negative affect than patients with the GABRB3 G1- alleles (p=. 037). Patients carrying the GABRB3 G1+ allele showed stronger AE relating to negative affective change (for example, increased depression) than their GABRB3 G1- counterparts (p=. 006). Biological influence in the development of some classes of cognitions is hypothesized. The clinical implications, particularly with regard to patient-treatment matching and the development of an integrated psychological and pharmacogenetic approach are discussed

    AMS and IRM studies in the late-variscan Santa Eulália Plutonic Complex (Ossa-Morena Zone, Portugal)

    Get PDF
    The Santa Eulália Plutonic Complex (SEPC) is a calc-alkaline granitic body, with an area of 400 km2, and is located in the north of the Ossa Morena Zone of the Variscan Iberian sector, near the limit with the Central Iberian Zone. SEPC is considered late-Variscan because it cross-cuts the regional variscan structures. The host rocks are metamorphic formations from Upper Proterozoic to Lower Paleozoic. The SEPC has two main granitic facies with different compositions and textures. From the rim to the core, there is a medium-to coarse-grained pink granite (G0), which involves large elongated masses of mafic to intermediate rocks (M); and a central grey monzonitic granite (G1) which presents a dominant medium granular facies, and also a slight porphyritic texture close to G0. AMS and IRM studies were conducted to characterise these rocks, from 61 sampling sites: 29 in G0, 27 in G1 and 5 in M. The Km values range between 41.6 and 7343.7 x 10-6 SI in granitic rocks: G0, with Km > 10-3 SI (mean: 1357.4 x 10-6 SI) which supports the presence of magnetite, and G1 with Km< 10-4 SI (mean: 97.0 x 10-6 SI). In M, Km values are homogeneous with a mean of 620.9 x 10-6 SI. The magnetic anisotropy (P%) and the ellipsoid shape (T) were only determined in granites. The mean values of P% are 6.2% and 3.1% in G0 and G1, respectively. T shows the strongest oblate ellipsoids in central G1 (mean: 0.365) and slightly oblate in G0 (mean: 0.099). The magnetic foliations are subvertical ENE-WSW-striking in G0 and G1. Magnetic lineations are subvertical in G0 and moderately plunge to the SE in G1.The saturation IRM (SIRM) mean values are 9.345 A/m in G0, 0.027 A/m in G1 and 2.634 A/m in M. In G0 and M, the IRM acquisition curves show saturation between 0.3 and 0.4 T, followed by a small increase in increasing fields, suggesting that the main carrier of remanence is low magnetite or Ti-magnetite. In G1, the acquisition curves demonstrate paramagnetic and antiferromagnetic fractions, but a small magnetite fraction can also be present. SIRM/K have mean values of 7.119 kA/m, 0.298 kA/m and 3.425 kA/m for Go, G1 and M, respectively. The AMS and SIRM data support that G0 and G1 have a distinct magnetic behaviour. G0 is controlled by a ferrimagnetic fraction. G1, with Km< 10-4 SI, shows a paramagnetic behaviour due to ferromagnesian minerals, such as biotite and ilmenite. In M, Km is typical of gabbros and granodiorites and is due to the high contents of ferromagnesian minerals. The magnetic behaviours of G0 and G1 suggest different redox conditions in the magma genesis. Magnetic anisotropy is higher in G0 due to the presence of magnetite, but microscope observations also show signs of a post-magmatic deformation in G0. Although magnetic foliations are subvertical ENE-WSW-striking in both granites, magnetic lineations are different. The differences reflect distinct redox processes at magmatic sources and different emplacement mechanisms of M, G0 and G1

    Comparison of MRI properties between multimeric DOTAGA and DO3A gadolinium-dendron conjugates

    Get PDF
    The inherent lack of sensitivity of MRI needs the development of new Gd contrast agents in order to extend 20Hz,37%, the application of this technique to cellular imaging. For this purpose, two multimeric MR contrast agents obtained by peptidic coupling between an amido amine dendron and GdDOTAGA chelates (premetalation strategy, G1-4GdDOTAGA) or DO3A derivatives which then were postmetalated (G1-4GdDO-3A) have been prepared. By comparison to the monomers, an increase of longitudinal relaxivity has been observed for both structures. Especially for G1-4GdDO-3A, a marked increase is observed between 20 and 60 MHz. This structure differs from G1-4GdDOTAGA by an increased rigidity due to the aromatic linker between each chelate and the organic framework. This has the effect of limiting local rotational movements, which has a positive impact on relaxivity

    Facundity of Whipfin Silver Biddy Gerres filamentosus (Cuvier) from Sharavati Estuary, Central West Coast of India

    Get PDF
    Fecundity of Gerres filamentosus varied from 48,300to 1,16760 in fishes ranging in size from 154 to 240 mm..Fecundity increases at the rate of cube of the total length .The number of ova per gram of body weight varied from 485 to 955, while the number of ova per gram ovary weight ranged from 11761 to  24250. The relationship between weight of ovary and fecundity is linear and number of ova increases at a rate less than that in relation to total length and body weight

    Length Weight Relationship of Whip Fin Silver Biddy Gerres Filamentosus (Cuvier) from Sharavathi Estuary, Central West Coast Of India

    Get PDF
    The length weight relationship and relative condition factors were studied between Jan. and Dec. 2008. Length weight relationship of Gerres filamentosus did not differ significantly between the sexes and combined equation is given by W= 0.000001663 L3.1675. The highest Kn value in female was in June (1.0950) and lowest in July (1.0950). Similarly the highest Kn value in male was in Dec (1.0587) and lowest in July (0.8994). Both in males and females the Kn value was highest in the size of 101-110 mm which can be attributed to feeding

    The properties of nerve cell precursors in hydra

    Get PDF
    Two signals, the head activator and an injury stimulus, control differentiation of nerve cells from uncommitted stem cells in hydra [Th. Holstein, H. C. Schaller, and C. N. David, (1986) Dev. Biol. 115, 9–17]. The time of action of these signals in the precursor cell cycle was determined. Methanol extracts of hydra containing 10−13 M head activator cause nerve cell commitment in S phase of the precursor cell cycle. Committed precursors complete the cell cycle, divide, and arrest in G1. Injury relieves the G1 block and precursors differentiate nerve cells. Under these conditions the time from commitment to nerve differentiation is 12 hr, the time from the end of S phase to nerve differentiation is 9 hr, and the time from the G1 block to nerve differentiation is 4 hr. Committed precursors blocked in G1 are unstable, decaying with a half-life of 12 hr if not stimulated to differentiate by an injury stimulus

    Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi

    Get PDF
    Calcification of the cosmopolitan coccolithophore species Emiliania huxleyi was investigated in relation to the cell division cycle with the use of batch cultures. With a 12 : 12 h light : dark cycle, the population was synchronised to undergo division as a cohort, simultaneously passing through the G1 (assimilation), S (DNA replication), and G2+M (cell division and mitosis) phases. Cell division was followed with the use of quantitative DNA staining and flow cytometry. Simultaneously, carbon-14 (14C) assimilation in organic and inorganic carbon as well as cell abundance, size, and organic nitrogen content were measured at 2-h intervals. In additional experiments, changes in calcification and cell cycle stages were investigated in nitrogen-, phosphorus-, and light-limited cultures. Calcification occurred only during the G1 cell cycle phase, as seen by the very tight correlation between the percentage of cells in G1 and calcification during the dark period. When growth was limited by nitrogen, cells decreased in size, remained in the G1 phase, and showed a moderate increase in the cell-specific calcite content. Limitation of growth by phosphorus, however, caused a significant increase in cell size and a dramatic increase in cellular calcite. Light limitation, by slowing the growth rate, prolonged the time cells spent in the G1 phase with a corresponding increase in the cellular calcite content. These results help explain the differing responses of coccolithophorid growth to nitrogen, phosphorus, and light limitation
    • …
    corecore