124 research outputs found
Image Reconstruction with a LaBr3-based Rotational Modulator
A rotational modulator (RM) gamma-ray imager is capable of obtaining
significantly better angular resolution than the fundamental geometric
resolution defined by the ratio of detector diameter to mask-detector
separation. An RM imager consisting of a single grid of absorbing slats
rotating ahead of an array of a small number of position-insensitive detectors
has the advantage of fewer detector elements (i.e., detector plane pixels) than
required by a coded aperture imaging system with comparable angular resolution.
The RM therefore offers the possibility of a major reduction in instrument
complexity, cost, and power. A novel image reconstruction technique makes it
possible to deconvolve the raw images, remove sidelobes, reduce the effects of
noise, and provide resolving power a factor of 6 - 8 times better than the
geometric resolution. A 19-channel prototype RM developed in our laboratory at
Louisiana State University features 13.8 deg full-angle field of view, 1.9 deg
geometric angular resolution, and the capability of resolving sources to within
35' separation. We describe the technique, demonstrate the measured performance
of the prototype instrument, and describe the prospects for applying the
technique to either a high-sensitivity standoff gamma-ray imaging detector or a
satellite- or balloon-borne gamma-ray astronomy telescope.Comment: submitted to Nuclear Instrument & Methods, special edition: SORMA
2010 on June 16, 201
Spurious states in the Faddeev formalism for few-body systems
We discuss the appearance of spurious solutions of few-body equations for
Faddeev amplitudes. The identification of spurious states, i.e., states that
lack the symmetry required for solutions of the Schroedinger equation, as well
as the symmetrization of the Faddeev equations is investigated. As an example,
systems of three and four electrons, bound in a harmonic-oscillator potential
and interacting by the Coulomb potential, are presented.Comment: 11 pages. REVTE
Bose-Einstein Condensates in Optical Lattices: Band-Gap Structure and Solitons
We analyze the existence and stability of spatially extended (Bloch-type) and
localized states of a Bose-Einstein condensate loaded into an optical lattice.
In the framework of the Gross-Pitaevskii equation with a periodic potential, we
study the band-gap structure of the matter-wave spectrum in both the linear and
nonlinear regimes. We demonstrate the existence of families of spatially
localized matter-wave gap solitons, and analyze their stability in different
band gaps, for both repulsive and attractive atomic interactions
Nuclear Alpha-Particle Condensates
The -particle condensate in nuclei is a novel state described by a
product state of 's, all with their c.o.m. in the lowest 0S orbit. We
demonstrate that a typical -particle condensate is the Hoyle state
( MeV, state in C), which plays a crucial role for
the synthesis of C in the universe. The influence of antisymmentrization
in the Hoyle state on the bosonic character of the particle is
discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle
state, therefore, are predominant. It is conjectured that -particle
condensate states also exist in heavier nuclei, like O,
Ne, etc. For instance the state of O at MeV
is identified from a theoretical analysis as being a strong candidate of a
condensate. The calculated small width (34 keV) of ,
consistent with data, lends credit to the existence of heavier Hoyle-analogue
states. In non-self-conjugated nuclei such as B and C, we discuss
candidates for the product states of clusters, composed of 's,
triton's, and neutrons etc. The relationship of -particle condensation
in finite nuclei to quartetting in symmetric nuclear matter is investigated
with the help of an in-medium modified four-nucleon equation. A nonlinear order
parameter equation for quartet condensation is derived and solved for
particle condensation in infinite nuclear matter. The strong qualitative
difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in
Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck,
(Springer-Verlag, Berlin, 2011
The effect on melanoma risk of genes previously associated with telomere length.
Telomere length has been associated with risk of many cancers, but results are inconsistent. Seven single nucleotide polymorphisms (SNPs) previously associated with mean leukocyte telomere length were either genotyped or well-imputed in 11108 case patients and 13933 control patients from Europe, Israel, the United States and Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic score that predicts telomere length, derived from these seven SNPs, is strongly associated (P = 8.92x10(-9), two-sided) with melanoma risk. This demonstrates that the previously observed association between longer telomere length and increased melanoma risk is not attributable to confounding via shared environmental effects (such as ultraviolet exposure) or reverse causality. We provide the first proof that multiple germline genetic determinants of telomere length influence cancer risk.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/dju26
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
- …