174 research outputs found

    Respiratory Protection Against Chemical and Biological Warfare Agents

    Get PDF
    Chemical and biological warfare (CBW) agents pose unavoidable threat, both to soldiers and civilians.Exposure to such deadly agents amidst the CBW agents contaminated environment can be avoided bytaking proper protective measures. Respiratory protection is indispensable when the soldiers or civiliansare surrounded by such deadly environment as contamination-free air is needed for respiration purposes.In this context, an attempt has been made to review the literature for the past five decades on developmentof various protective devices for respiratory protection against aerosols, gases, and vapours of CBWagents. This review covers structural, textural, and adsorption properties of materials used in gas filtersand mechanical filters for the removal of CBW agents.Defence Science Journal, 2008, 58(5), pp.686-697, DOI:http://dx.doi.org/10.14429/dsj.58.169

    A STUDY ON KANDUGHNA TAILA IN FILARIAL LYMPHANGITIS AND ULCERS

    Get PDF
    The disease Shlipada is very common in Andhra Pradesh Coastal belts. The chronic filarial patients used to suffer from acute periodic episodes. During these acute periodic episodes majority of the filarial patients develop lymphangitis (inflammation of lymphatic vessel), wounds and ulcers in affected legs. Some of the patients develop oozing blisters and pustules. Patients with these acute symptoms suffer from severe pain and tenderness and un-hygiene may lead to secondary bacterial infections. These periodic episodes often end with fibrosis and permanent swelling (Lymphedema). Many Ayurvedic herbal and herbo-mineral drugs were successfully used internally to reduce chronic filarial swelling (lymphedema), but there is an ultimate need to find an external application to reduce the acute symptoms like lymphangitis, wounds and ulcers. Kandughna taila is a Ayurvedic herbal oil prepared from Kandughna Dashaimani (a group of 10 drugs indicated in Itching) of Caraka samhita. This Kandughna taila was selected to study externally on Filarial patients. As a part of PhD study to find the efficacy of drug this oil alone was used in 28 patients in an open clinical trail. Encouraging results were observed during and after 30 days of treatment. Out of 28 cases, 8 (28.8%) got good response, 15 (53.6%) got fair response, 2 (7.1%) got poor response and 3 (10.7%) cases did not show any response. Overall 63.68% relief was found in all acute clinical parameters. Parameter wise 62% of relief in lymphangitis, 56.1% in pain, 62.5% in tenderness, 77.78% relief in wound/ ulcer were found. In statistical analysis based paired t-test relief on acute symptoms like lymphangitis, pain, tenderness, wound were found highly significant (P<0.0001). Statistically overall effect of treatment on acute symptoms was also found highly significant (P<0.0001)

    Dynamic Adsorptive Removal of Toxic Chemicals for Purification of Water

    Get PDF
    To determine the efficiency of carbon column for the removal of toxic chemicals from water, the adsorption of phenol in concentration range from 0.600 glt to 1.475 gll was studied on activecarbon of 80 CTC grade, 12 X 30 BSS particle size, 1280 m2/g surface area, and of coconut shell origin, under dynamic conditions at space velocity from 0.318 min-' to 4.24 min-' at 25 'C. The carbon column of 100 cm length and 2 cm diameter was found to be removing phenol from the aqueous solution of concentration 1.475 gll up to 84 min at 0.678 min-' space velocity at 5.0 ppm phenol breakthrough concentration. However, no phenol was observed in carbon-treated water after 80 min. The service life of carbon column (100 cm lengthX25 cm diameter) was assessed through the water purification system developed at the Defence Laboratory, Jodhpur and was determined to be 4.095 days with twoas factor of safety for 10 ppm initial concentration of phenol at 0.678 min-' space velocity (corresponding to water flow rate). Effects of carbon bed length, water flow rate, and the phenol concentration were also studied

    A Non aqueous Formulation for Efficient Detoxification of Chemical Weapons at Sub zero Temperatures

    Get PDF
    An effective decontamination methodology based on nucleophilic non-aqueous decontaminant has been developed against chemical weapons sulfur mustard and soman. This new formulation consists of non-aqueous solution of 2-aminoethanol (60%, w/v), potassium hydroxide (2%, w/v), and N-methyl-2-pyrrolidone (38 %, w/v) and detoxified more than 99 % of sulfur mustard and soman within a period of 30 min at -35 °C. It was found to be operable over a wide range of temperatures starting from -35 °C to +55 °C without losing its fluidity and detoxicant efficiency at sub-zero temperatures promising hassle-free application against chemical weapons. It degrades sulfur mustard to divinyl sulfide and 2-chloroethyl vinyl sulfide and converted soman into O-pinacolyl O’-(2-amino) ethyl methylphosphonate, which are relatively non toxic to humans. This formulation is environmentally benign, relatively non corrosive and has an improved capability to dissolve and decontaminate chemical weapons within 15 minutes at ambient conditions. This approach paves the way for efficient and rapid decontamination platform for chemical weapons and holds considerable promise for field application in near future

    Strengthening mechanisms in thermomechanically processed NbTi-microalloyed steel

    Get PDF
    The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
    • …
    corecore