468 research outputs found
Is EQ-5D-5L Better Than EQ-5D-3L? A Head-to-Head Comparison of Descriptive Systems and Value Sets from Seven Countries
Objective: This study describes the first empirical head-to-head comparison of EQ-5D-3L (3L) and EQ-5D-5L (5L) value sets for multiple countries. Methods: A large multinational dataset, including 3L and 5L data for eight patient groups and a student cohort, was used to compare 3L versus 5L value sets for Canada, China, England/UK (5L/3L, respectively), Japan, The Netherlands, South Korea and Spain. We used distributional analyses and two methods exploring discriminatory power: relative efficiency as assessed by the F statistic, and an area under the curve for the receiver-operating characteristics approach. Differences in outcomes were explored by separating descriptive system effects from valuation effects, and by exploring distributional location effects. Results: In terms of distributional evenness, efficiency of scale use and the face validity of the resulting distributions, 5L was superior, leading to an increase in sensitivity and precision in health status measurement. When compared with 5L, 3L systematically overestimated health problems and consequently underestimated utilities. This led to bias, i.e. over- or underestimations of discriminatory power. Conclusion: We conclude that 5L provides more precise measurement at individual and group levels, both in terms of descriptive system data and utilities. The increased sensitivity and precision of 5L is likely to be generalisable to longitudinal studies, such as in intervention designs. Hence, we recommend the use of the 5L across applications, including economic evaluation, clinical and public health studies. The evaluative
The molecular systems composed of the charmed mesons in the doublet
We study the possible heavy molecular states composed of a pair of charm
mesons in the H and S doublets. Since the P-wave charm-strange mesons
and are extremely narrow, the future experimental
observation of the possible heavy molecular states composed of
and may be feasible if they really exist.
Especially the possible states may be searched for via the
initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and
Corrected typos
Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron
We present 90% confidence level limits on magnetic monopole production at the
Fermilab Tevatron from three sets of samples obtained from the D0 and CDF
detectors each exposed to a proton-antiproton luminosity of
(experiment E-882). Limits are obtained for the production cross-sections and
masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and
bound in material surrounding the D0 and CDF collision regions. In the absence
of a complete quantum field theory of magnetic charge, we estimate these limits
on the basis of a Drell-Yan model. These results (for magnetic charge values of
1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously
published bounds.Comment: 18 pages, 17 figures, REVTeX
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the D(2\,^1S_0) assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the 2\,^3S_1-1\,^3D_1 mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
D(1\,^3D_3); otherwise, they could be assigned as the D(1\,^3D_3) and
, respectively; (4) the could be either the
's partner or the D_s(1\,^3D_3); and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs
Neonectria is a cosmopolitan genus and it is, in part, defined by
its link to the anamorph genus Cylindrocarpon. Neonectria
has been divided into informal groups on the basis of combined morphology of
anamorph and teleomorph. Previously, Cylindrocarpon was divided into
four groups defined by presence or absence of microconidia and chlamydospores.
Molecular phylogenetic analyses have indicated that Neonectria
sensu stricto and Cylindrocarpon sensu stricto are
phylogenetically congeneric. In addition, morphological and molecular data
accumulated over several years have indicated that Neonectria sensu
lato and Cylindrocarpon sensu lato do not form a
monophyletic group and that the respective informal groups may represent
distinct genera. In the present work, a multilocus analysis (act,
ITS, LSU, rpb1, tef1, tub) was applied to representatives of
the informal groups to determine their level of phylogenetic support as a
first step towards taxonomic revision of Neonectria sensu
lato. Results show five distinct highly supported clades that correspond
to some extent with the informal Neonectria and
Cylindrocarpon groups that are here recognised as genera: (1) N.
coccinea-group and Cylindrocarpon groups 1 & 4
(Neonectria/Cylindrocarpon sensu stricto); (2) N.
rugulosa-group (Rugonectria gen. nov.); (3) N.
mammoidea/N. veuillotiana-groups and Cylindrocarpon group 2
(Thelonectria gen. nov.); (4) N. radicicola-group and
Cylindrocarpon group 3 (Ilyonectria gen. nov.); and (5)
anamorph genus Campylocarpon. Characteristics of the anamorphs and
teleomorphs correlate with the five genera, three of which are newly
described. New combinations are made for species where their classification is
confirmed by phylogenetic data
Evidence for CP-Violating Asymmetries in B0->pi+pi- Decays and Constraints on the CKM Angle phi2
We present an improved measurement of CP-violating asymmetries in B0 -> pi+
pi- decays based on a 78 fb^-1 data sample collected at the Y(4S) resonance
with the Belle detector at the KEKB asymmetric-energy e+e- collider. We
reconstruct one neutral B meson as a B0 -> pi+ pi- CP eigenstate and identify
the flavor of the accompanying B meson from inclusive properties of its decay
products. We apply an unbinned maximum likelihood fit to the distribution of
the time intervals between the two B meson decay points. The fit yields the
CP-violating asymmetry amplitudes Apipi = +0.77+/-0.27(stat)+/-0.08(syst) and
Spipi = -1.23+/-0.41(stat)+0.08/-0.07(syst), where the statistical
uncertainties are determined from Monte Carlo pseudo-experiments. We obtain
confidence intervals for CP-violating asymmetry parameters Apipi and Spipi
based on a frequentist approach. We rule out the CP-conserving case,
Apipi=Spipi=0, at the 99.93% confidence level. We discuss how these results
constrain the value of the CKM angle phi2.Comment: 26 pages, 13 figures, submitted to Phys. Rev.
Various correlations in a Heisenberg XXZ spin chain both in thermal equilibrium and under the intrinsic decoherence
In this paper we discuss various correlations measured by the concurrence
(C), classical correlation (CC), quantum discord (QD), and geometric measure of
discord (GMD) in a two-qubit Heisenberg XXZ spin chain in the presence of
external magnetic field and Dzyaloshinskii-Moriya (DM) anisotropic
antisymmetric interaction. Based on the analytically derived expressions for
the correlations for the cases of thermal equilibrium and the inclusion of
intrinsic decoherence, we discuss and compare the effects of various system
parameters on the correlations in different cases. The results show that the
anisotropy Jz is considerably crucial for the correlations in thermal
equilibrium at zero temperature limit but ineffective under the consideration
of the intrinsic decoherence, and these quantities decrease as temperature T
rises on the whole. Besides, J turned out to be constructive, but B be
detrimental in the manipulation and control of various quantities both in
thermal equilibrium and under the intrinsic decoherence which can be avoided by
tuning other system parameters, while D is constructive in thermal equilibrium,
but destructive in the case of intrinsic decoherence in general. In addition,
for the initial state , all
the correlations except the CC, exhibit a damping oscillation to a stable value
larger than zero following the time, while for the initial state , all the correlations monotonously
decrease, but CC still remains maximum. Moreover, there is not a definite
ordering of these quantities in thermal equilibrium, whereas there is a
descending order of the CC, C, GMD and QD under the intrinsic decoherence with
a nonnull B when the initial state is .Comment: 8 pages, 7 figure
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- …