237 research outputs found

    Prospects for Detecting a Neutrino Magnetic Moment with a Tritium Source and Beta-beams

    Get PDF
    We compare the prospects for detecting a neutrino magnetic moment by the measurement of neutrinos from a tritium source, reactors and low-energy beta-beams. In all cases the neutrinos or antineutrinos are detected by scattering of electrons. We find that a large (20 MCurie) tritium source could improve the limit on the neutrino magnetic moment significantly, down to the level of a few ×10−12\times 10^{-12} while low-energy beta-beams with sufficiently rapid production of ions could improve the limits to the level of a few ×10−11\times 10^{-11}. The latter would require ion production at the rate of at least 101510^{15} s−1^{-1}.Comment: 6 pages, 3 figure

    State of the art of BNP and NT-proBNP immunoassays: The CardioOrmoCheck study.

    Get PDF
    To evaluate differences in analytical performance and clinical results of BNP and NT-proBNP immunoassays, a proficiency testing program, called CardioOrmoCheck study, has been organized since 2005 under the patronage of the Study Group of the Cardiovascular Biomarkers of the Italian Society of Clinical Biochemistry (SIBIOC). On average more than 100 Italian laboratories were involved in the annual 2005–2011 cycles. In total, 72 study samples were distributed and measured by participant laboratories for a total of 6706 results. A great difference in between-method variability was found between BNP (43.0 CV%) and NT-proBNP (8.7 CV%) immunoassays. However, with the only exception of the POCT method for BNP assay, all immunoassay methods showed an imprecision≀10 CV% at the cut-off levels (i.e. 100 ng/L for BNP and 400 ng/L for NT-proBNP assay, respectively). Furthermore, CardioOrmoCheck study demonstrated that the most popular BNP immunoassays are affected by large systematic differences (on average more than 2 folds between TRIAGE Beckman-Coulter and ADVIA Centaur Siemens methods), while the agreement between NT-proBNP methods was better. CardioOrmoCheck study demonstrates that there are marked differences in analytical performance and measured values in particular among commercialmethods for BNP assay. These findings suggest that it may be not reasonable to recommend identical cut-off or decision values for all BNP immunoassays

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure

    Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP

    Get PDF
    Promptly decaying lightest neutralinos and long-lived staus are searched for in the context of light gravitino scenarios. It is assumed that the stau is the next to lightest supersymmetric particle (NLSP) and that the lightest neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of the production of these particles is found. Hence, lower mass limits for both kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is found to be greater than 71.5 GeV/c^2. In the search for long-lived stau, masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10 to 150 \eVcc . Combining this search with the searches for stable heavy leptons and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc may be set for the stau mas

    Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV

    Full text link
    The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure

    Updated precision measurement of the average lifetime of B hadrons

    Get PDF
    The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore