724 research outputs found

    Program schemes with deep pushdown storage.

    Get PDF
    Inspired by recent work of Meduna on deep pushdown automata, we consider the computational power of a class of basic program schemes, TeX, based around assignments, while-loops and non- deterministic guessing but with access to a deep pushdown stack which, apart from having the usual push and pop instructions, also has deep-push instructions which allow elements to be pushed to stack locations deep within the stack. We syntactically define sub-classes of TeX by restricting the occurrences of pops, pushes and deep-pushes and capture the complexity classes NP and PSPACE. Furthermore, we show that all problems accepted by program schemes of TeX are in EXPTIME

    Effect of nuclear periphery on nucleon transfer in peripheral collisions

    Full text link
    A comparison of experimental heavy residue cross sections from the reactions 86Kr+64Ni,112,124Sn with the model of deep-inelastic transfer (DIT) is carried out. A modified expression for nucleon transfer probabilities is used at non-overlapping projectile-target configurations, introducing a dependence on isospin asymmetry at the nuclear periphery. The experimental yields of neutron-rich nuclei close to the projectile are reproduced better and the trend deviating from the bulk isospin equilibration is explained. For the neutron-rich products further from the projectile, originating from hot quasiprojectiles, the statistical multifragmentation model reproduces the mass distributions better than the model of sequential binary decay. In the reaction with proton-rich target 112Sn the nucleon exchange appears to depend on isospin asymmetry of nuclear periphery only when surface separation is larger than 0.8 fm due to the stronger Coulomb interaction at more compact di-nuclear configuration.Comment: LaTeX, 13 pages, 7 figures, to appear in Nuclear Physics

    Time-dependent perturbations in two-dimensional String Black Holes

    Full text link
    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}Comment: 11 pages, two figures,UA-NPPS.9/92; CERN-TH.6671/9

    Garvey-Kelson Relations for Nuclear Charge Radii

    Get PDF
    The Garvey-Kelson relations (GKRs) are algebraic expressions originally developed to predict nuclear masses. In this letter we show that the GKRs provide a fruitful framework for the prediction of other physical observables that also display a slowly-varying dynamics. Based on this concept, we extend the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out of the approximately 800 nuclei whose charge radius is experimentally known. We find a rms deviation between the GK predictions and the experimental values of only 0.01 fm. This should be contrasted against some of the most successful microscopic models that yield rms deviations almost three times as large. Predictions - with reliable uncertainties - are provided for 116 nuclei whose charge radius is presently unknown.Comment: 4 pages and 3 figure

    Enhanced T-odd P-odd Electromagnetic Moments in Reflection Asymmetric Nuclei

    Get PDF
    Collective P- and T- odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than two orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P- odd effects in atoms and molecules. First a simple estimate is given and then a detailed theoretical treatment of the collective T-, P- odd electric moments in reflection asymmetric, odd-mass nuclei is presented and various corrections evaluated. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation.Comment: 28 pages, Revte

    Time-Dependent Spintronic Transport and Current-Induced Spin Transfer Torque in Magnetic Tunnel Junctions

    Full text link
    The responses of the electrical current and the current-induced spin transfer torque (CISTT) to an ac bias in addition to a dc bias in a magnetic tunnel junction are investigated by means of the time-dependent nonquilibrium Green function technique. The time-averaged current (time-averaged CISTT) is formulated in the form of a summation of dc current (dc CISTT) multiplied by products of Bessel functions with the energy levels shifted by mω0m\hbar \omega _{0}. The tunneling current can be viewed as to happen between the photonic sidebands of the two ferromagnets. The electrons can pass through the barrier easily under high frequencies but difficultly under low frequencies. The tunnel magnetoresistance almost does not vary with an ac field. It is found that the spin transfer torque, still being proportional to the electrical current under an ac bias, can be changed by varying frequency. Low frequencies could yield a rapid decrease of the spin transfer torque, while a large ac signal leads to both decrease of the electrical current and the spin torque. If only an ac bias is present, the spin transfer torque is sharply enhanced at the particular amplitude and frequency of the ac bias. A nearly linear relation between such an amplitude and frequency is observed.Comment: 13 pages,8 figure

    Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

    Get PDF
    Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock and Relativistic Mean-Field theories. Due to the presence of low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of single-particle level density. To cure the pathological behavior of shell correction around the particle threshold, the method based on the Green's function approach has been adopted. It is demonstrated that for the vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell stabilization appears for Z=124, and 126, and for N=184. On the other hand, in the relativistic approaches the strongest spherical shell effect appears systematically for Z=120 and N=172. This difference has probably its roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly independent on the force, macroscopic energies extracted from self-consistent calculations strongly depend on the actual force parametrisation used. That is, the A and Z dependence of mass surface when extrapolating to unknown superheavy nuclei is prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.

    Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations

    Get PDF
    By using the scaling method and the Thomas-Fermi and Extended Thomas-Fermi approaches to Relativistic Mean Field Theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface and Coulomb terms, is examined by comparing it with self-consistent results of the finite nuclei incompressibility for some currently used non-linear sigma-omega parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely the curvature and surface-symmetry terms, is made.Comment: 18 pages, REVTeX, 3 eps figures, changed conten

    Anatomy of Spin-Transfer Torque

    Full text link
    Spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a non-magnet into a ferromagnet is absorbed at the interface. We demonstrate this fact explicitly using free electron models and first principles electronic structure calculations for real material interfaces. Three distinct processes contribute to the absorption: (1) spin-dependent reflection and transmission; (2) rotation of reflected and transmitted spins; and (3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons, these processes reduce the transverse component of the transmitted and reflected spin currents to nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the magnetization is proportional to the transverse piece of the incoming spin current.Comment: 16 pages, 8 figures, submitted to Phys. Rev.
    corecore