3,853 research outputs found

    Gamma Rays from SN1987A due to Pseudoscalar Conversion

    Get PDF
    A light pseudoscalar coupled to two photons would be copiously emitted by the core of a supernova. Part of this flux would be converted to γ\gamma-rays by the galactic magnetic field. Measurements on the SN1987A γ\gamma-ray flux by the Gamma-Ray Spectrometer on the Solar Maximum Mission satellite already imply a bound on the coupling g<3×1012g < 3 \times 10^{-12} GeV1^{-1}. The improved generation of satellite-borne detectors, like EGRET or the project GLAST, could be able to detect a pseudoscalar-to-photon signal from a nearby supernova, for allowed values of gg.Comment: 8 pages, no figure

    Gauge-Higgs Dark Matter

    Full text link
    When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model compactified on the S1/Z2S^1/Z_2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.Comment: 16 pages, 2 figure

    Passage of Time in a Planck Scale Rooted Local Inertial Structure

    Get PDF
    It is argued that the `problem of time' in quantum gravity necessitates a refinement of the local inertial structure of the world, demanding a replacement of the usual Minkowski line element by a 4+2n dimensional pseudo-Euclidean line element, with the extra 2n being the number of internal phase space dimensions of the observed system. In the refined structure, the inverse of the Planck time takes over the role of observer-independent conversion factor usually played by the speed of light, which now emerges as an invariant but derivative quantity. In the relativistic theory based on the refined structure, energies and momenta turn out to be invariantly bounded from above, and lengths and durations similarly bounded from below, by their respective Planck scale values. Along the external timelike world-lines, the theory naturally captures the `flow of time' as a genuinely structural attribute of the world. The theory also predicts expected deviations--suppressed quadratically by the Planck energy--from the dispersion relations for free fields in the vacuum. The deviations from the special relativistic Doppler shifts predicted by the theory are also suppressed quadratically by the Planck energy. Nonetheless, in order to estimate the precision required to distinguish the theory from special relativity, an experiment with a binary pulsar emitting TeV range gamma-rays is considered in the context of the predicted deviations from the second-order shifts.Comment: 17 pages; Diagram depicting "the objective flow of time" is replaced with a much-improved diagra

    QCD Sum Rules, Scattering Length and the Vector Mesons in Nuclear Medium

    Get PDF
    Critical examination is made on the relation between the mass shift of vector mesons in nuclear medium and the vector-meson - nucleon scattering length. We give detailed comparison between the QCD sum rule approach by two of the present authors (Phys. Rev. {\bf C46} (1992) R34) and the scattering-length approach by Koike (Phys. Rev. {\bf C51} (1995) 1488). It is shown that the latter approach is mortally flawed both technically and conceptually.Comment: 16 pages, latex, 4 figures appended as uu-encoded fil

    Low-energy gluon contributions to the vacuum polarization of heavy quarks

    Get PDF
    We calculate a correction to the electromagnetic current induced by a heavy quark loop. The contribution of this correction to the vacuum polarization function appears at the O(alpha_s^3) order of perturbation theory and has a qualitatively new feature -- its absorptive part starts at zero energy in contrast to other contributions where the absorptive parts start at the two-particle threshold. Our result imposes a constraint on the order n of the moments used in the heavy-quark sum rules, n<4.Comment: 8 pages in LaTeX, 1 PostScript figure included in the tex

    Supergravity for Effective Theories

    Full text link
    Higher-derivative operators are central elements of any effective field theory. In supersymmetric theories, these operators include terms with derivatives in the K\"ahler potential. We develop a toolkit for coupling such supersymmetric effective field theories to supergravity. We explain how to write the action for minimal supergravity coupled to chiral superfields with arbitrary numbers of derivatives and curvature couplings. We discuss two examples in detail, showing how the component actions agree with the expectations from the linearized description in terms of a Ferrara-Zumino multiplet. In a companion paper, we apply the formalism to the effective theory of inflation.Comment: 26 page

    Unparticles-Higgs Interplay

    Get PDF
    We show that scalar unparticles coupled to the Standard Model Higgs at the renormalizable level can have a dramatic impact in the breaking of the electroweak symmetry already at tree level. In particular one can get the proper electroweak scale without the need of a Higgs mass term in the Lagrangian. By studying the mixed unparticle-Higgs propagator and spectral function we also show how unparticles can shift the Higgs mass away from its Standard Model value, \lambda v^2, and influence other Higgs boson properties. Conversely, we study in some detail how electroweak symmetry breaking affects the unparticle sector by breaking its conformal symmetry and generating a mass gap. We also show that, for Higgs masses above that gap, unparticles can increase quite significantly the Higgs width.Comment: 14 pages, 7 figures, typos correcte

    Searches for Lepton Flavour Violation at a Linear Collider

    Get PDF
    We investigate the prospects for detection of lepton flavour violation in sparticle production and decays at a Linear Collider (LC), in models guided by neutrino oscillation data. We consider both slepton pair production and sleptons arising from the cascade decays of non-leptonic sparticles. We study the expected signals when lepton-flavour-violating (LFV) interactions are induced by renormalization effects in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), focusing on the subset of the supersymmetric parameter space that also leads to cosmologically interesting values of the relic neutralino LSP density. Emphasis is given to the complementarity between the LC, which is sensitive to mixing in both the left and right slepton sectors, and the LHC, which is sensitive primarily to mixing in the right sector. We also emphasize the complementarity between searches for rare LFV processes at the LC and in low-energy experiments.Comment: 19 pages, 10 figure

    Model Building with Gauge-Yukawa Unification

    Full text link
    In supersymmetric theories with extra dimensions, the Higgs and matter fields can be part of the gauge multiplet, so that the Yukawa interactions can arise from the gauge interactions. This leads to the possibility of gauge-Yukawa coupling unification, g_i=y_f, in the effective four dimensional theory after the initial gauge symmetry and the supersymmetry are broken upon orbifold compactification. We consider gauge-Yukawa unified models based on a variety of four dimensional symmetries, including SO(10), SU(5), Pati-Salam symmetry, trinification, and the Standard Model. Only in the case of Pati-Salam and the Standard Model symmetry, we do obtain gauge-Yukawa unification. Partial gauge-Yukawa unification is also briefly discussed.Comment: 23 page

    Cosmological Implications of Dynamical Supersymmetry Breaking

    Full text link
    We provide a taxonomy of dynamical supersymmetry breaking theories, and discuss the cosmological implications of the various types of models. Models in which supersymmetry breaking is produced by chiral superfields which only have interactions of gravitational strength (\eg\ string theory moduli) are inconsistent with standard big bang nucleosynthesis unless the gravitino mass is greater than \CO(3) \times 10^4 GeV. This problem cannot be solved by inflation. Models in which supersymmetry is dynamically broken by renormalizable interactions in flat space have no such cosmological problems. Supersymmetry can be broken either in a hidden or the visible sector. However hidden sector models suffer from several naturalness problems and have difficulties in producing an acceptably large gluino mass.Comment: 24 pages (uses harvmac) UCSD/PTH 93-26, RU-3
    corecore