1,177 research outputs found

    Do Athermal Amorphous Solids Exist?

    Full text link
    We study the elastic theory of amorphous solids made of particles with finite range interactions in the thermodynamic limit. For the elastic theory to exist one requires all the elastic coefficients, linear and nonlinear, to attain a finite thermodynamic limit. We show that for such systems the existence of non-affine mechanical responses results in anomalous fluctuations of all the nonlinear coefficients of the elastic theory. While the shear modulus exists, the first nonlinear coefficient B_2 has anomalous fluctuations and the second nonlinear coefficient B_3 and all the higher order coefficients (which are non-zero by symmetry) diverge in the thermodynamic limit. These results put a question mark on the existence of elasticity (or solidity) of amorphous solids at finite strains, even at zero temperature. We discuss the physical meaning of these results and propose that in these systems elasticity can never be decoupled from plasticity: the nonlinear response must be very substantially plastic.Comment: 11 pages, 11 figure

    Time-Varying Priority Queuing Models for Human Dynamics

    Full text link
    Queuing models provide insight into the temporal inhomogeneity of human dynamics, characterized by the broad distribution of waiting times of individuals performing tasks. We study the queuing model of an agent trying to execute a task of interest, the priority of which may vary with time due to the agent's "state of mind." However, its execution is disrupted by other tasks of random priorities. By considering the priority of the task of interest either decreasing or increasing algebraically in time, we analytically obtain and numerically confirm the bimodal and unimodal waiting time distributions with power-law decaying tails, respectively. These results are also compared to the updating time distribution of papers in the arXiv.org and the processing time distribution of papers in Physical Review journals. Our analysis helps to understand human task execution in a more realistic scenario.Comment: 8 pages, 6 figure

    Renormalization group theory for finite-size scaling in extreme statistics

    Full text link
    We present a renormalization group (RG) approach to explain universal features of extreme statistics, applied here to independent, identically distributed variables. The outlines of the theory have been described in a previous Letter, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.Comment: 15 pages, 8 figures, to appear in Phys. Rev.

    Coevolution of dynamical states and interactions in dynamic networks

    Get PDF
    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example we consider a model of cooperation, where the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.Comment: 4 pages, 5 figures, for related material visit http:www.imedea.uib.es/physdept

    Noise-guided evolution within cyclical interactions

    Get PDF
    We study a stochastic predator-prey model on a square lattice, where each of the six species has two superior and two inferior partners. The invasion probabilities between species depend on the predator-prey pair and are supplemented by Gaussian noise. Conditions are identified that warrant the largest impact of noise on the evolutionary process, and the results of Monte Carlo simulations are qualitatively reproduced by a four-point cluster dynamical mean-field approximation. The observed noise-guided evolution is deeply routed in short-range spatial correlations, which is supported by simulations on other host lattice topologies. Our findings are conceptually related to the coherence resonance phenomenon in dynamical systems via the mechanism of threshold duality. We also show that the introduced concept of noise-guided evolution via the exploitation of threshold duality is not limited to predator-prey cyclical interactions, but may apply to models of evolutionary game theory as well, thus indicating its applicability in several different fields of research.Comment: to be published in New J. Phy

    Extreme value distributions and Renormalization Group

    Get PDF
    In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. So far, only affine rescalings have been considered. We show, however, that more general rescalings are natural and lead to new limit distributions, apart from the Gumbel, Weibull, and Fr\'echet families. The problem is approached using the language of Renormalization Group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of the differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.Comment: 16 pages, 5 figures. Final versio

    The distance upon contact: Determination from roughness profile

    Get PDF
    The point at which two random rough surfaces make contact takes place at the contact of the highest asperities. The distance upon contact d_0 in the limit of zero load has crucial importance for determination of dispersive forces. Using gold films as an example we demonstrate that for two parallel plates d_0 is a function of the nominal size of the contact area L and give a simple expression for d_0(L) via the surface roughness characteristics. In the case of a sphere of fixed radius R and a plate the scale dependence manifests itself as an additional uncertainty \delta d(L) in the separation, where the scale L is related with the separation d via the effective area of interaction L^2\sim\pi Rd. This uncertainty depends on the roughness of interacting bodies and disappears in the limit L\to \infty.Comment: 5 pages, 4 figures, to be published in PR

    Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner's Dilemma games

    Full text link
    Evolutionary Prisoner's Dilemma games with quenched inhomogeneities in the spatial dynamical rules are considered. The players following one of the two pure strategies (cooperation or defection) are distributed on a two-dimensional lattice. The rate of strategy adoption from a randomly chosen neighbors are controlled by the payoff difference and a two-value pre-factor ww characterizing the players whom the strategy learned from. The reduced teaching activity of players is distributed randomly with concentrations ν\nu at the beginning and fixed further on. Numerical and analytical calculations are performed to study the concentration of cooperators as a function of ww and ν\nu for different noise levels and connectivity structures. Significant increase of cooperation is found within a wide range of parameters for this dynamics. The results highlight the importance of asymmetry characterizing the exchange of master-follower role during the strategy adoptions.Comment: 4 pages, 5 figures, corrected typo

    Extreme fluctuations in noisy task-completion landscapes on scale-free networks

    Full text link
    We study the statistics and scaling of extreme fluctuations in noisy task-completion landscapes, such as those emerging in synchronized distributed-computing networks, or generic causally-constrained queuing networks, with scale-free topology. In these networks the average size of the fluctuations becomes finite (synchronized state) and the extreme fluctuations typically diverge only logarithmically in the large system-size limit ensuring synchronization in a practical sense. Provided that local fluctuations in the network are short-tailed, the statistics of the extremes are governed by the Gumbel distribution. We present large-scale simulation results using the exact algorithmic rules, supported by mean-field arguments based on a coarse-grained description.Comment: 16 pages, 6 figures, revte

    Coevolutionary Dynamics: From Finite to Infinite Populations

    Get PDF
    Traditionally, frequency dependent evolutionary dynamics is described by deterministic replicator dynamics assuming implicitly infinite population sizes. Only recently have stochastic processes been introduced to study evolutionary dynamics in finite populations. However, the relationship between deterministic and stochastic approaches remained unclear. Here we solve this problem by explicitly considering large populations. In particular, we identify different microscopic stochastic processes that lead to the standard or the adjusted replicator dynamics. Moreover, differences on the individual level can lead to qualitatively different dynamics in asymmetric conflicts and, depending on the population size, can even invert the direction of the evolutionary process.Comment: 4 pages (2 figs included). Published in Phys. Rev. Lett., December 200
    • …
    corecore