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We explore the coupled dynamics of the internal states of a set of interacting elements and the network of
interactions among them. Interactions are modeled by a spatial game and the network of interaction links
evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the
adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly
cooperative stationary state. The resulting network has the characteristics of a small world network when a
mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected
nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturba-
tions acting on the state of these special nodes trigger global avalanches leading to complete network
reorganization.
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Recent studies on the structure of social, technological,
and biological networks have shown that they share salient
features that situate them far from being completely regular
or random[1–3]. Most of the models proposed to construct
these networks are grounded in a graph-theoretical approach,
that is algorithmic methods to build graphs formed by ele-
ments (the nodes) and links that evolve according to pre-
specified rules. Despite the progress made, there are still sev-
eral open questions[2]. An important issue to be considered
among these questions is that networks are dynamical enti-
ties [4] that evolve and adapt driven by the actions of the
elements that form a network.

The aim of this paper is to analyze a simple setting of
such adaptive and evolving network, in which there is coevo-
lution of the state of the elements in the nodes of the network
and the interaction links defining the network. Interactions
among elements are modeled with the aid of game theory
[5], frequently applied in social, economic, and biological
situations. This mathematical theory models an interaction
involving two (or more) elements, each with two or more
“strategies” or states, such that the outcome depends on the
choices of all the interacting elements. The outcome is given
in the form of a “utility” or payoff given to each element
according to the selected action of the interacting elements.
The introduction of spatial interactions lead to the develop-
ment of “spatial games”[6–8], in which the elements are
located in the nodes of a fixed network of interaction, dis-
playing a rich spatiotemporal dynamics. Here, we go beyond
these studies by introducing adaptation(plasticity) in the
coupling between elements, so that the network of interac-
tion evolves adapting to the outcome of the game. Our re-
sults include new asymptotic steady states, and the emer-
gence of a hierarchical network structure that governs the
global dynamics of the system.

The model. We consider a system composed ofN ele-

ments whose interactions are specified by a networkN. The
neighborhood of elementi sVid is composed of those ele-
ments directly connected toi by one link, and the size ofVi
defines itsdegree ki. The state of each elementxi can be
s1,0d or s0,1d. In each step(generation), every ith element
interacts with all other elements inside its neighborhoodVi,
and accumulates a payoffPi =o jPVi

xiJxj
T, depending on the

chosen statesxi and payoff matrix

J = Sp00 p01

p10 p11
D .

The ith element compares its own payoff with allj PVi and
changes its state to the state of the site with the greatest
payoff in hijøVi [7]. The plasticity of the network is intro-
duced here as network dynamics in which existing links can
be severed and replaced by new ones. We make the assump-
tion that whether an interaction link is severed depends on
the joint payoff, that is the total payoff by the pair of inter-
acting elements: the interactions giving the lowest benefit
will be removed.

In the remainder, for the sake of concreteness, we will
address the case of the Prisoner’s Dilemma(PD) game,
which has been widely used as a model displaying complex
behavior emerging from the competition between coopera-
tive and selfish behavior[6]. In its simplest form, two ele-
ments may either choose to cooperatefC,xC=s1,0dg, or de-
fect fD ,xD=s0,1dg. If both elements choose C, each gets a
payoff p00; if one defects while the other cooperates, the
former gets payoffp10.p00, while the latter gets the “suck-
ers” payoff p01,p00; if both defect, each getsp11. Under
the standard restrictions p10+p01,2p00,
p10.p00.p11.p01, defection is the best choice in a one-
shot game resulting in a Nash equilibrium in which both
elements defect. Following previous studies[7,8], we con-
sider a simplified version of the game given by the interac-
tion matrix p00=1, p10=b, p11=e, p01=0, in the limit e=0
[9].*Electronic address: victor@imedea.uib.es
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In this context, the dynamical rule proposed for local
neighborhood adaptation—plasticity—is defined by analyz-
ing the joint benefit obtained by each of the possible pairwise
interactions: C-C, C-D, and D-D. Thus, according to the pay-
off obtained, the worst interaction is clearly observed in a
D-D situation, in which both elements will be better off by
searching for a new partner. Given this simplistic analysis,
taking into account that we are considering undirected links,
and assuming that the probability to rewire a C-D interaction
is much smaller than to rewire a D-D interaction, our imple-
mentation of plasticity will allow Defectors to exchange
(probabilistically) a D-neighbor by another randomly chosen
element.

Thus, the game is divided in three stages.(i) Each element
i plays the PD game with the same current state with all its
neighbors, and collects an aggregate payoffPi. (ii ) Each el-
ementi updates its current state by comparing its payoff with
its neighbors andimitatesthe state of the wealthiest element.
An element is said to besatisfiedif its own payoff is the
highest among its neighbors(otherwise it is unsatisfied). (iii )
Unsatisfied D-elements that imitate a Defector, replace this
link with probability p by a new one pointing to a randomly
chosen element.

The plasticity parameterp leads to a time evolution of the
local connectivity of the network, leaving the average degree
kkil constant. The parameterp sets a time scale for the evo-
lution of the network with respect to the state update. In
general we expectp!1, so that the state update evolves in a
much faster time scale than the network evolution, whilep
=1 represents the limit of simultaneous update of interac-
tions and states.

We have characterized numerically the model usingN
=10 000 elements, averaged over 100 different random ini-
tial conditions, with an initial population of 0.6N Coopera-
tors randomly distributed in the network[10]. The initial
network is generated by randomly distributingNkkil /2 links.
A prototype value ofkkil=8 was chosen in order to secure an
initial large connected component. The game is playedsyn-
chronously; that is, elements decide their state in advance
and they all play at the same time.

Stationary states. To characterize the macroscopic behav-
ior of the system, we introduce the fractionrCstd of coopera-
tors at a given time. We define the order parameterrC as the
average over realizations of the stationary Cooperators’ den-
sity. In the case of random mixing(i.e., in the absence of an
interaction network), population dynamics gives[11] ṙC
=rC

2s1−rCds1−bd. Thus, forb.1, the only stable solution
corresponds to a fully defective population. For fixed net-
works sp=0d, a typical time evolution shows in general that
the order parameter fluctuates around an average value that
decreases as the incentiveb to defect increases(Fig. 1). At
b.2, the Defectors dominate the network[12]. For fixed
networks, the precise value for this transition has been stud-
ied in detail[7,12,13]. In contrast to random mixing,context
preservation(fixed interactions) sustains partial cooperation
[14].

This picture changes when the elements turn on their plas-
ticity behavior sp.0d (see Fig. 1). Extensive numerical
simulations show that the system either reaches a stationary

configuration withrC.0 (where the states and the network
do not change in time), or an absorbing state with all ele-
ments being DefectorsrC=0. Thecooperative phase—the
stationary states with a large value ofrC— is formed by a set
of solutions corresponding to different network configura-
tions and distribution of Cooperators. In Fig. 1, we charac-
terize these states showing thatrC.0.8, a value always
much larger than in the nonadaptive case. Slight variations
exist for differentkklù4. The crucial difference is the dis-
appearance of the behavior observed in the casep=0 in
which, upon increasingb, the large majority of the realiza-
tions reaches a configuration with a very low fraction of
Cooperators. The plasticity parameterp changes the time it
takes to reach the stationary state: smallerp produce longer
transients.

Network structure. In order to understand how such a
highly cooperative structure can be sustained, we analyze the
implications of the proposed dynamical rules in the network
structure. Consider that elementi updates its state imitating
the state of elementj ; we define the correspondencel :N
→N such thatlsid= j . Focusing only on those links, we iden-
tify the imitation networkas the subnetwork composed of
directed linksi → lsid (Fig. 2). Necessary and sufficientcon-
ditions for a stationary state(rC.0, pÞ0) are (a) there are
no links between two Defectors, and(b) each C-neighbori of
a Defectorg satisfies the payoff relation

P j . Pg . Pi, j = lsid. s1d

In other words, in a stationary state,all Defectors become
satisfied interacting only with Cooperators, while Coopera-
tors can be unsatisfied while imitating other Cooperators.
These steady state conditions naturally imply that the ele-
ment with largest payoff in a stationary configuration is a
satisfied Cooperator. In Fig. 2, we show a partial view(the
nodes in the lowest level are not shown) of an imitation
network, where the nodes in a layer imitate those elements in
an upper layer indicated by the directed edges. At the top of
the figure lie the nodes whose action is imitated by a chain of
Cooperators.

FIG. 1. Average fraction of CooperatorsskrCld as a function of
b and p in the stationary regime. The defective phaserC=0 is not
included in the averages ofrC. (p=0: full triangles;p=0.01: circles;
p=0.1; squares;p=1: diamonds).
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A first characterization of how the structure of the coop-
erative stationary network configurations changes as a func-
tion of b and p is obtained by measuring the normalized
degree variancesn

2=skki
2l−kkil2d / kkil (Fig. 3). We find that

the degree distribution departs significantly from the initial
Poisson distributionssn

2=1d only for large values of the plas-
ticity parameterp. For increasingb, the tail of the degree
distribution expands and approaches an exponential form,
indicating some elements become more connected than oth-
ers (hubs).

We now address the question of whether the structure
generated in our dynamical model has the characteristics of a
small world network [1]. The clustering coefficientc mea-
sures the fraction of neighbors of a node that are connected
among them, averaged over all the nodes in the network. In
our simulations we find(Fig. 4) that the clustering coefficient
increases very mildly with respect to a fixed random network
crand=kkil /N [15]. Thus, even though the average path length
is similar to a random network, in order to account for the

high clustering, we need to introduce “local” neighbor selec-
tion [16]. This mechanism is easily implemented introducing
a parameterq that modifies step(iii ), so that with probability
q, the new neighbor is selected among the neighbors of the
neighbors; otherwise, with probability 1−q, the random
neighbor is chosen. We find that, while most of our results
previously discussed are qualitatively independent of the
value of q, the clustering coefficient reaches a very large
value even for a small value ofq. For instance, just 1%sq
=0.01d of local neighbor selection is enough to increasec a
hundred times, being the clustering largest for a slow evolu-
tion of the networksp!1d. In addition, the clustering coef-
ficient decreases slightly with system size, an indication of a
decay slower than theN−1 decay expected for random
graphs. All together, our results indicate that local neighbor
selection is needed in order to generate a small world net-
work.

It is worth noting that an evolutionary model based on the
PD game with a more complex strategy representation also
shows, in the absence of local neighbor selection, that the
increase of the clustering coefficient can be related to the
change of the degree distribution[15]. In contrast with Ref.
[15], we do not observe a power law degree distribution.

Dynamics: global avalanches and network stability. The
hierarchical structure of the network is of fundamental im-
portance to the dynamics on the system. A closer look at the
evolution towards a stationary state indicates the presence of
avalanches(Fig. 5). The transient dynamics is characterized
in general by large oscillations inrCstd. When the payoff of

FIG. 2. (Color online) Partial view of a sample imitation net-
work in a steady state. Elements on a lower layer imitate the state of
elements in an upper layer.

FIG. 3. Normalized variancesn
2=skki

2l−kkil2d / kkil as a function
of b. The solid linessn

2=1d corresponds to the fixed random net-
work with a Poisson distribution of degree. Parameter values as in
Fig. 1.

FIG. 4. Normalized clustering coefficientc/crand as a function
of b. For p=0, we recover the random value. Open symbols forq
=0 (diamonds:p=0.01; squares:p=0.1; circles:p=1); filled circles
correspond top=1 andq=1.

FIG. 5. Time evolution ofrC. The evolution starts in a fixed
random network(p=0) up to timet=200 when network dynamics
is switched on, so thatp=1 for t.200. At timet=500, the state of
the node with largest payoff is forced from C to D. Parameterb
=1.7.
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any D element increases above the upper limit of Eq.(1), an
avalanche towards defection is triggered. This D element
will be imitated by C neighbors, and each will initiate an
avalanche of replication of D state through all those elements
connected by the imitation network. During the avalanche,
recovery of cooperation is possible through those satisfied
Cooperators, which rebuild the hierarchical topology[17].

The description in terms of the imitation network also
indicates the vulnerability of the structure to stochastic fluc-
tuations. Figure 5 illustrates the sensitivity of the stationary
network structure to perturbations acting on the highly con-
nected nodes, which reflects their key role in sustaining co-
operation. At timet=500, the most connected node is exter-
nally forced to change state from C to D, triggering an
avalanche. Notice the large oscillations inrC, reproducing
the transient dynamics in which the system searches for a
new stationary globally cooperative structure.

Conclusion. We have addressed the general question of
network formation from the perspective of coevolution be-
tween the dynamics of the elements’ state and the interac-
tions network. Our model of cooperation with network plas-
ticity leads to hierarchical topologies[18], the emergence of
global cascades,[19,20] and vulnerability to attacks acting
on specific targets[21]. The hierarchical interaction network
is reached as a stationary network starting from a random

network of interactions. The network appears structured from
a few highly connected elements easily identified through the
imitation network. Such a network has the characteristics of
a small world when a mechanism of local neighbor selection
is introduced in the adaptive dynamics of the network. The
hierarchical structure supports a stationary, highly coopera-
tive state for general situations in which, for a fixed network,
the system would not settle in a stationary state and in which
the cooperation level would be much smaller. The stability of
the network is very sensitive to changes in state of the few
highly connected nodes: external perturbations acting on
these nodes trigger global avalanches, leading to transient
dynamics in which the network completely reorganizes itself
searching for a new, highly cooperative stationary state. Fu-
ture work should explore the robustness of these results in
slightly different settings. For instance, we have checked that
the same qualitative results are obtained with asynchronous
update regarding Fig. 1, and that adding continuous noise
weakens the cooperative phase by the spontaneous occur-
rence of avalanches. Work along these lines is in progress.
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