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Abstract. We study a stochastic predator–prey model on a square lattice,
where each of the six species has two superior and two inferior partners. The
invasion probabilities between species depend on the predator–prey pair and
are supplemented by Gaussian noise. Conditions are identified that warrant the
largest impact of noise on the evolutionary process, and the results of Monte
Carlo simulations are qualitatively reproduced by a four-point cluster dynamical
mean-field approximation. The observed noise-guided evolution is deeply routed
in short-range spatial correlations, which is supported by simulations on other
host lattice topologies. Our findings are conceptually related to the coherence
resonance phenomenon in dynamical systems via the mechanism of threshold
duality. We also show that the introduced concept of noise-guided evolution
via the exploitation of threshold duality is not limited to predator–prey cyclical
interactions, but may apply to models of evolutionary game theory as well, thus
indicating its applicability in several different fields of research.
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1. Introduction

Cyclical interactions, the simplest non-trivial example being the children’s rock-scissors-paper
game, are despite their apparent simplicity fascinating examples of evolutionary processes
[1, 2]. Examples from real life are the mating strategies of side-blotched lizards [3], overgrowths
by marine sessile organisms [4], and competitions among different strains of bacteriocin-
producing bacteria [5]. Moreover, studies of cyclical interactions may provide insights into
the formation of defensive alliances [6, 7] and Darwinian selection [8], as well as structural
complexity and pre-biotic evolution [9]. Thus, cyclical interactions are rightfully acquiring a
central role in the study of evolutionary processes [10], not just in Lotka–Volterra like predator–
prey systems, but also in evolutionary game theory [11], where strategic complexity [12, 13]
often leads to a closed loop of dominance between participating strategies.

An interesting concept that has only recently begun to supplement models of evolutionary
processes is the addition of stochasticity at some level of interactions. While the origin of
stochasticity can sometimes be related to the finiteness in population size [14, 15], uncertainties
may also enter under the assumption of irrationality and errors in decision-making [16]–[18].
Moreover, the approach is viable when stochasticity in payoffs originates from the heterogeneity
of the system [19], or if explicit payoff fluctuations are considered [20]. The latter examples are
closely related to the concept we adopt presently, as stochasticity does not originate from finite
populations but is due to uncertainties arising by predator–prey interactions. Irrespective of these
particularities, however, stochasticity appears to possess the ability of having a profound impact
on certain evolutionary processes [21]. Examples range from stochastic gain in population
dynamics [22] and eradication of coexistence in the cyclic Lotka–Volterra model [23], to
cooperation promotion in the spatial prisoner’s dilemma game [24].

Already long before making its debut in evolutionary models, stochasticity has been
identified as a potentially crucial agonist in certain types of dynamical systems. The so-called
stochastic resonance, standing for the resonant noisy enhancement of the correlation between
the system’s response and a weak external stimulus, was first reported for bistable systems [25],
and later on also for a broad variety of other physical as well as biological systems [26].
Importantly, noise can play an ordering role even in the absence of additional external signals,
whereby the established term describing the phenomenon is coherence resonance [27]–[32].
Over the years a particular property of dynamical systems, termed excitability, has crystallized
as being very beneficial when noise-induced phenomena are desirable features. Excitability,
uniquely comprising elements of slow and fast dynamics thus enabling weak perturbations
of the system to result in large-amplitude deviations before recovery, has fueled studies
reporting various effects of noise on temporal and spatially extended dynamical systems for
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over a decade [33]–[35]. It is the different noise dependencies of the slow and fast dynamics,
constituting a so-called threshold duality, that are responsible for the majority of noise-
induced phenomena observed in excitable systems [36]. In particular, while the slow dynamics,
representing the lower threshold, is very susceptible even to weak noisy perturbations, the
fast dynamics, representing the upper threshold, is not. On the other hand however, the fast
dynamics, resulting in large amplitude excitations, is sensitive to strong noise. Consequently,
the temporal order of these excitations exhibits a maximum when we gradually increase the
strength of noise [29].

Although some correlations between the coherence resonance in dynamical systems
and noise-guided evolution have recently been established in terms of proximity to special
bifurcation points [37], the search for additional conceptual similarities linking the two avenues
of research is still vibrant. This paper links these avenues by showing that a reticulate six-species
predator–prey model with heterogeneous invasion probabilities offers adjustment possibilities
via fine-tuning of a single parameter that takes the system from a noise frigid to a very
susceptible state. In the latter state, the studied predator–prey model incorporates two thresholds
that can be affected by noise, whereby one is small, conceptually similar to the slow dynamics,
and the other large, conceptually similar to the fast dynamics of an excitable system. By
introducing Gaussian noise, we show that this threshold duality can be readily exploited
in a resonant manner, thus indicating conceptual similarities between the presently reported
phenomenon of noise-guided evolution within cyclical interactions and that of coherence
resonance reported previously for excitable dynamical systems. We emphasize, however, that
the outlined similarities are indeed only conceptual, as the quantity presently of interest is not
temporal order of the dynamics as by the observation of coherence resonance but the survival
chance of different species within the habitat, which resonantly depends on the intensity of
noise. Moreover, the threshold duality is not explicitly constituted by the slow and fast dynamics
as by excitable systems, but as we will show below, is routed in the parameters defining the
predator–prey interactions.

The remainder of this paper is organized as follows. In the next section, we define the
microscopic model and summarize the results for the noise-free case. We also describe the
introduced Gaussian noise and comment on its impact on the elementary process. The details
of Monte Carlo (MC) simulation are provided as well. In section3, we present the effects
of Gaussian noise, and show that at appropriate system conditions the latter can have a large
impact on the survival of different species, even reverting the evolutionary process in a resonant
manner. In particular, while small and large intensities of noise fail to have a profound impact on
the model, intermediate intensities induce a re-entrance effect of the seemingly defeated species,
hence decisively guiding the evolutionary process. The non-monotonous effect of different noise
intensities is supported by the application of the dynamical mean-field (DMF) approximation.
To test the generality of our findings, we also perform MC simulations of the model on different
host lattice topologies. At the end of section3, we show that the concept of threshold duality,
linking the present results with those obtained previously for noise-driven excitable systems, is
not limited to predator–prey cyclical interaction but can be applied to models of evolutionary
game theory as well. Finally, section4 features a summary of main results and concludes
by suggesting that the discovered mechanism for noise-guided evolution is applicable under
different circumstances, and could thus prove useful in various fields of research such as ecology
or economy, where evolutionary processes are often subject to unpredictable factors.
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Figure 1. Food web of the studied predator–prey model. Arrows point from
predators towards prey with heterogeneous invasion probabilities specified along
the edges. Inner loops are colored for easier terminology.

2. Predator–prey model

The studied predator–prey model comprises six species that are initially uniformly distributed on
the square lattice. The distribution function of species is given by a set of variablessi = 0, . . . , 5,
wherei runs over allL × L lattice sites. Predator–prey relations of nearest neighbors and the
corresponding invasion probabilities (06 α, β, γ, δ 6 1) are defined by the food web presented
in figure1. More precisely,α determines the probability that an even labeled predator will invade
an odd labeled prey, and vice versa forβ, while γ andδ determine probabilities of invasions
within even and odd species, respectively. As exemplified in [38, 39] for lattice Lotka–Volterra
type models, the studied six-species model can be defined by a concise reaction scheme. In
particular, for speciess = 2k

s + j
α

→ 2s, (1)

s + l
γ
→ 2s, (2)

and for speciess = 2k + 1,

s + j
β

→ 2s, (3)

s + l
δ

→ 2s, (4)

where j = (s+ 1) mod 6, l = (s+ 2) mod 6, andk = 0, 1, 2. In the case of homogeneous
invasion probabilities (α = β = γ = δ = 1) the system has two equivalent three-species states
(denoted by(0 + 2 + 4) and(1 + 3 + 5)) exhibiting a self-organizing pattern maintained by cyclic
invasions. Departing from a randomly distributed state where every lattice site is occupied
by one of the six species, a spatial organization of growing domains begins. The domains
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are formed either by the members of the red alliance(0 + 2 + 4) or the members of the blue
alliance(1 + 3 + 5) (see figure1 for the color assignment). In accordance with the coarsening
process on the spatial grid, one of the two domains is eliminated with equal probability, and
the system ends up in the absorbing state consisting of members of either the red or the blue
alliance only. In order to characterize the stationary state more precisely, we may introduce the
order parameterm = ρ1 +ρ3 +ρ5 − ρ0 − ρ2 − ρ4, wherebyρs (s = 0, . . . , 5) denotes the fraction
of speciess on the spatial grid. Herem = 1 corresponds to the exclusive presence of the blue
alliance(1 + 3 + 5), whilem = −1 indicates the absolute authority of the red alliance(0 + 2 + 4).
The two domains are more precisely called ‘defensive alliances’ because their members protect
each other cyclically against the external invaders [6, 7]. For example, if species 0 invades
the allies(1 + 3 + 5), in particular by attacking species 1, its intention is immediately disabled
by the species 5 that is superior to both 0 and 1. Thus, the intruder 0 is quickly abolished
from the (1 + 3 + 5) domain by the very same species 5 that dominates species 1 within the
alliance. This reasoning applies for all other possible attempts of non-allied species to invade
a defensive alliance. Noteworthy, in this mechanism the proper spatio-temporal distribution of
species plays a crucial role, meaning that the classical mean-field approximation, assuming a
well-mixed state, cannot reproduce this feature. An interesting possibility is now to study effects
of heterogeneous invasion probabilities, which might affect the evolutionary process in a non-
trivial way [40], essentially forming the basis for noise-guided evolution to be reported below.

Since effects of heterogeneous invasion probabilities on the evolution of defensive alliances
in the studied cyclically dominated model have already been presented in [41], we here just
summarize the main findings that are essential for the present study, and refer the reader to
the previous work for more details. First, it is important to note that heterogeneities in the
invasion probabilities are introduced in an alliance-specific way. In particular, we can study what
happens when one defensive alliance is more aggressive towards the other (α 6= β), or when the
internal mechanism fails to assure flawless protection against the invaders (γ 6= δ). In order
to address these two issues systematically, we introduce two control parameters that, due to
symmetries in the food web, uniquely determine the stationary state of the system characterized
by the order parameterm. Namely, letG = β − α andH = γ − δ whereH, G ∈ [−1, 1]. Since
G < 0 (β < α) andH > 0 (γ > δ) clearly favor the survival of the red alliance(0 + 2 + 4) (and
vice versa for the blue alliance), an interesting competition obviously emerges only ifG > 0 and
H > 0 (or equivalently ifG < 0 andH < 0). Due to the symmetry of the problem, we restrain
or study to the parameter space spanning overH, G ∈ [0, 1]. As soon asG rises above zero
(keepingH = 0) allies(1 + 3 + 5) are favored as their members invade non-allied species more
successfully (α < β), thus MC simulations yieldingm = 1 in the stationary state. However, the
advantage of the blue alliance(1 + 3 + 5), given byG > 0, may be compensated by choosing
sufficiently large values ofH . Especially, ifH rises above zero the internal invasions within the
alliance(1 + 3 + 5) slow down in comparison to(0 + 2 + 4), thus decreasing the effectiveness
of the protection shield of the blue alliance and in turn nullifying its advantage given by
G > 0. Surprisingly, the results of MC simulations reveal a non-monotonous phase diagram
in dependence onH , as shown in figure2. In particular, the advantage of allies(1 + 3 + 5) again
increases ifH approaches 1 (the internal invasion probabilityδ vanishes). Note that asδ → 0
allies(1 + 3 + 5) essentially stop to invade each other within the alliance. Via a stability analysis
of the interface separating members of the two defensive alliances we have shown [41] that
the penetration of the red alliance into the unfavorableG > 0 region is a consequence of an
interface driven effect. Presently, we will show that the spatiality of the system is also a relevant
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(m = −1) or the blue(1 + 3 + 5) (m = 1) alliance.

feature when the system is driven from a noise frigid to a noise susceptible state by varying the
parameterH .

Turning to the effects of noise, we should point out that the model involves stochasticity
already in its present form. In particular, the invasions of predators to neighboring prey sites are
not deterministic but characterized by a probability. The latter source of stochasticity is routed
in the spatiality of the model, dictating a random selection of one neighbor of each species in
order to carry out an elementary invasion process. Stochastic effects also cannot be neglected if
the system size is finite. However, this is a plausible assumption for populations studied within
the context of evolutionary game theory [19, 42, 43]. In these systems, the strategy adoption
is also ruled by a probability function that depends on the payoff differences between the
two competing strategies [44]. Motivated by bounded rationality, often an additional source
of stochasticity is introduced by the so-called smooth imitation rule that allows an inferior
strategy to replace a more successful one. The application of the Fermi function, adopted
from statistical physics, allows to measure the intensity of selection via a single parameterK ,
termed accordingly as the temperature of selection. In theK → 0 limit the stochastic effects
can be neglected, while forK → ∞ limit the stochasticity is maximal. In our predator–prey
model, lacking individual payoffs, the stochasticity resulting from finiteK can be modeled by
introducing Gaussian noise additively to all invasion probabilities so that the modified invasion
probability is p = x + ξ , where x ∈ (α, β, γ, δ) and ξ is a random variable being normally
distributed with zero mean andσ standard deviation. It is worth noticing that the introduced
Gaussian noise is in fact multiplicatively coupled with the dynamics ofρs, as can be inferred
from the classical mean-field equations or the DMF approximation. The Gaussian noise satisfies
the correlation function

〈ξm(h)ξn(k)〉 = σ 2δmnδhk, (5)
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where indexesm and n mark the central location of two predator–prey pairs on the lattice,
while h andk denote two consecutive pair interactions. Thus, the stochastic disturbances are
delta correlated (uncorrelated) in time as well as among predator–prey pairs. Importantly, if
an invasion probability becomes negative (p < 0) due to noise we allow backwards invasions
(a prey can occupy a predator’s site), while potential values of invasion probabilities above
1 (|p| > 1) are simply treated as sure events. We thus allow noise-induced reversals of the
direction of dominance depicted in figure1.

Each elementary step of the MC simulation involves two actions. First, two nearest
neighbors are chosen at random, and second, if the two neighboring species form a predator–
prey pair (species directly connected by an arrow in figure1) the prey (or predator depending on
ξ ) is killed with the probabilityp = x + ξ , wherex is the invasion probability specified along the
connecting arrow andξ is the Gaussian noise with properties as described above. On the other
hand, if the two randomly chosen species form a neutral pair (species not directly connected by
an arrow in figure1), or if both are identical, the second part of the elementary MC step dictates
no action. In accordance with the random sequential update, each individual is selected once on
average during a particular MC step.

3. Results

First, we study how the phase separation line in theH–G parameter space varies in dependence
on σ . Due to symmetries in the food web, and to ensure transparency, we perform all below
calculations usingβ = 1.0 andγ = 1.0, thus designatingα andδ as the only parameters able
to changeH andG. Figure2 shows the results, from which it can be inferred that there exists
an intermediateσ for which allies(0 + 2 + 4) receive the biggest boost, or in other words, are
able to compensate for the largest values ofG by a givenH . Clearly, there exists a resonant
dependence onσ as larger levels of stochasticity fail to have the same effect because the phase
separation line gradually converges to the zero-noise limit asσ increases.

To study the outlined resonant dependence, we plot1G as a function ofσ , whereby1G
measures the rise of the phase separation line in the vertical direction with respect to its position
at σ = 0 at any givenH . Results for different values ofH are presented in figure3. Two
important conclusions can be made. First, added Gaussian disturbances affect the evolutionary
process resonantly in dependence onσ , and second, the phenomenon becomes increasingly
pronounced asH → 1 (δ → 0). We should also point out that by values ofH close to 0 noise has
absolutely no impact on the evolutionary process. Thus, we demonstrate that as the parameter
H is varied from 0 to 1 the system goes from a noise frigid to a noise susceptible state, and
moreover, noise-guided evolution sets in ifσ is appropriately adjusted.

Our numerical findings can be supported by an alternative approach entailing the
application ofk-site cluster DMF approximation. Since the classical mean-field approximation
assumes well-mixed populations, it is easy to understand that it cannot reproduce above-
described results. As we have argued earlier, the spatiality plays a fundamental role by
the explanation of the penetration of the red alliance into the unfavorableG > 0 area. The
shortage of the classical mean-field approximation may be eliminated by applying the DMF
approximation technique that proved to be very appropriate for obtaining qualitatively correct
phase diagrams for several non-equilibrium systems. For a detailed description of this method
we refer the reader to earlier papers [44, 45]. The DMF approximation is a dynamical version
of the cluster-variational method, and it involves finding a hierarchy of evolution equations
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Figure 3. Absolute rise of the phase separation line1G in dependence onσ
for different values ofH (pink = 0.1, blue= 0.2, green= 0.5, red= 0.99). Note
that positive values of1G manifest a facilitative effect of noise on the survival
of the red alliance(0 + 2 + 4). The inset shows results from the four-point DMF
approximation for the same values ofH as in the main figure, in particular
depicting critical values ofG separating the two pure phases.

for the probability distributions of configurations within a cluster ofk sites. If correlations in
larger clusters are neglected then the level of approximation can be characterized by the value
of k. Similarly as by the MC simulations, in the DMF approach the introduction of Gaussian
noise can, besides altering the strength of invasions, also revert the direction of dominance.
Therefore, aside from handling the elementary processes displayed in figure1, we also have
to consider the possibility of reverse processes. With this extension, the four-point level of
approximation can describe correctly not only the impact of the dynamical benefit of the red
alliance, but also the impact of Gaussian noise. Indeed, displayed as an inset in figure3, the
re-entrance phenomenon driven by increasing values ofσ is well reproduced, and moreover,
exhibits the same dependence onH as revealed by MC simulations. In particular, values ofH
close to zero yield a virtually noise-resistant dynamics across the whole span ofσ , whereas
noise-guided evolution sets in asH → 1 for intermediate levels of stochasticity. Nonetheless,
a slight difference between the results of MC simulations and the DMF approximation can
be observed. According to the latter, large values ofσ can eliminate the dynamical benefit of
allies (0 + 2 + 4), thus resulting in the solution predicted by the classical mean-field theory. An
even higher level of approximation might still eliminate this minor inconsistency with the MC
simulations, but unfortunately the resulting number of variables is too large to be manageable
by the computer resources currently available to us. In sum, the failure of classical noise-
driven mean-field equations to reproduce the results of MC simulations and the necessity for
the four-point cluster DMF approximation confirm that the reported noise-guided evolution
within cyclical interactions is indeed deeply routed in the short-range correlations of the spatial
distribution, as conjectured already from the outlay of phase diagrams depicted in figure2 and
findings reported previously in [41].
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In order to strengthen our arguments, we also examine the dynamics of the noise-driven
model via MC simulations on two additional types of regular graphs, namely on the honeycomb
and the triangular lattice. Our choice is motivated by the fact that the two types of host lattices
have different coordination numberz. While the honeycomb lattice (z = 3) allows manifesting
the importance of spatial correlations, the triangular lattice (z = 6) may move the system
closer towards mean-field conditions. Therefore, we argue that the noise driven re-entrance
phenomenon will be more (less) pronounced when the honeycomb (triangular) host topology
is applied. Indeed, results presented in figure4 fully support this expectation as the observed
phenomenon is substantially better expressed forz = 3 than forz = 6, and thus additionally
strengthen the fact that the reported noise-guided evolution within cyclical interactions is routed
in the short-range correlations of the spatial distribution.

Next, it is of interest to draw some analogies between the reported noise-guided evolution
within cyclical interactions and the phenomenon of coherence resonance reported previously in
excitable dynamical systems [29, 36]. Although we presently consider the survival of different
alliances as being resonantly dependent onσ and not the temporal order of their evolution, and
are thus strictly speaking unable to write about a classical coherence resonance phenomenon, we
still argue a conceptual link can be established by addressing the presently reported phenomenon
as an evolutionary coherence resonance [37]. Notably, related conceptual differences emerge
also in [22], where the authors employ similar arguments to address the problem. Aside from this
difference, however, we will show that the threshold duality, constituted by the noise susceptible
slow dynamics and the noise robust fast dynamics of excitable systems, can be identified also in
the present model, and is in fact crucial for the observation of noise-guided evolution.

The threshold duality can be made visible by studying the properties of invasion
probabilities along the phase separation line of the deterministic model shown in figure2. We
start with close to zero values ofH where, taking into account results presented in figure3,
noise has no impact on the evolutionary process irrespective ofσ . There, the switch between the
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dominance of allies(1 + 3 + 5) and(0 + 2 + 4) occurs atH = 0.1 andG = 0.065, or equivalently,
at δ = 0.9 andα = 0.935 (note thatβ = 1.0 andγ = 1.0 are held fixed throughout this work).
Importantly, the differencesδth = 1− δ and αth = 1− α define the two thresholds Gaussian
noise can influence in order to guide the evolutionary process. In particular, if one of the
two invasion probabilitiesα or δ becomes equal to 1, the corresponding defensive alliance
would benefit and eventually defeat the other, as can be inferred from the red line depicted
in figure 2 (consider for example the case whenδ = 1.0, while α = 0.935; clearly the blue
alliance wins makingm = 1 in the stationary state). However, since atH = 0.1 both thresholds
have virtually identical magnitude (δth = 0.1 andαth = 0.065), and are exposed to the same
intensity of temporally and spatially uncorrelated Gaussian noise, the long-term probability
of exceeding one threshold while leaving the other untouched is practically zero. Thus, noise
cannot influence the evolution of the two defensive alliances irrespective ofσ , as displayed in
figure 3. However, the situation changes substantially asH increases. ByH = 0.5 the phase
separation line is situated atG = 0.175 in the noise-free case. The two relevant thresholds then
equalδth = 0.5 andαth = 0.175. As above, if Gaussian noise exceeds onlyαth the red alliance
would win (m = −1), and via similar reasoning, if onlyδth is exceeded the blue alliance would
win (m = 1). Contrary to theH = 0.1 case, here the two relevant thresholds differ substantially.
Therefore, it is easy to see that by an appropriate value ofσ the thresholdαth = 0.175 will be
exceeded statistically far more often thanδth = 0.5, which ultimately results in noise-guided
evolution, specifically giving the seemingly defeated alliance(0 + 2 + 4) the winning edge over
the allies(1 + 3 + 5), as indicated by the positive values of1G in figure3. However, by larger
values ofσ the upper thresholdδth = 0.5 will be exceeded often as well, thus again nullifying
the dynamical benefit coming from the faster inner cycle for the red alliance, which explains
the depicted resonant dependence of1G. Note that although largerσ increase the probability
of crossing the lower threshold (αth = 0.175) as well, the maximal value of each invasion
probability equaling 1 (above that each event is simply treated as a sure event) prohibits a
noticeable effect of this fact, and thus results in the decline of1G asσ increases. We argue that
the difference in the two thresholds (lower threshold given byαth = 0.175 and the upper one
given byδth = 0.5), constituting a threshold duality in the presently studied model of cyclical
interactions, is conceptually similar to the threshold duality observed in excitable dynamical
systems, albeit the latter is routed in the fast and slow dynamics of the system [29, 36], while
the former originates directly from the parameter values defining the evolutionary process.

Finally, it is straightforward to extend the above argument also to the case whenH = 0.99,
whereby the noise-free phase separation line is situated atG = 0.09, and hence the two relevant
thresholds, equalingδth = 0.99 andαth = 0.09, clearly differ by an order of magnitude thus
constituting the vital threshold duality needed for the observation of noise-guided evolution.
Importantly, an additional threshold emerges related to the possibility of noise-induced negative
values ofδ. Specifically, the new threshold is simply equal toδ = 0.01, and is apparently of
similar magnitude toαth = 0.09. Since negative values ofδ flip the circle of dominance within
the blue alliance(1 + 3 + 5), thus temporarily disrupting its protective shield against the invaders,
intermediate values ofσ now warrant a two-fold advantage to the red alliance, ultimately
resulting in the best-expressed resonance curve in figure3. The origin of the two-fold advantage
of the red allies can be studied more precisely by measuring the success rate of invasions along
the two inner circles (depicted with blue and red in figure1) of the food web. To be more
specific, we calculate the normalized difference of clockwise and anti-clockwise invasionsw

for the red and blue alliance in dependence onσ . Note thatw = 1 if all invasions occur in the
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Figure 5. Normalized difference of clockwise and anti-clockwise invasionsw

along the two inner circles (depicted with blue and red lines in accordance with
the coloring in figure1) of the food web in dependence onσ . Panel (a) shows
results forH = 0.99 andG = 0.07, while panel (b) features results forH = 0.1
andG = 0.09.

anti-clockwise direction (as depicted by arrows in figure1), and w = 0 if clockwise and
anti-clockwise invasions occur equally often. In other words, the value ofw characterizes
the strength of the defensive mechanism within an alliance. Results in figure5 show that
the defensive shield of the blue alliance(1 + 3 + 5) suffers virtually immediately after noise
is introduced, whereas the red alliance is able to uphold a perfectly functioning protection
until σ ≈ 0.6. Naturally, asσ increases further the defensive capacity of the red alliance also
weakens. However, the window resulting from the delayed faint of the defensive mechanism,
in conjunction with the previously described mechanism warranted by the threshold duality via
δth andαth, enables a resonant strength of the referred(0 + 2 + 4) domain. Results displayed in
figure 3 support this argument sinceσ ≈ 0.6 limits the peak of the resonance curve obtained
for H = 0.99, thus signaling the beginning of end of the noisy support for the red allies. Also
in accordance with the results presented in figure3, for H = 0.1 the dependence ofw on σ is
very similar for both defensive alliances (red and blue), thus clearly signaling the absence of the
mechanism warranting noise-guided evolution in the studied model. The simultaneous decrease
of the defensive strength results in a noise-frigid state since all invasion probabilities are of
similar magnitude. The above-described simple arguments provide a workable mechanism for
noise-guided evolution, and at least conceptually unify the phenomenon with the coherence
resonance in excitable dynamical systems.

To end this section, we would like to note that the above explanation warranting the
resonant dependence of1G on σ , intimately relying on the existence of threshold duality
in evolutionary processes, is valid for other systems as well. To demonstrate this, we briefly
consider a spatial prisoner’s dilemma game [46]–[48], where two cooperators receive the reward
R = 1, two defectors receive the punishmentP = 0, while a cooperator and defector receive the
suckers payoffS= −r and the temptationT = 1 +r , respectively, thus satisfying the prisoner’s
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dilemma payoff rankingT > R > P > S if r > 0. It is easy to identify a threshold duality in
the system if onlyr � 1. If the payoffs become stochastic as a result of additive Gaussian
noise [49], inequalitiesT > R and P > S differing by r will be violated statistically much
more frequently by a givenσ than theR > P inequality differing by 1. It is easy to understand
that intermediate levels of stochasticity promote cooperation because the violation ofT > Rand
P > Sfavors the cooperative strategy since it potentially nullifies the advantager defectors have
over cooperators (two cooperators might end up receiving a larger payoff each than a defector
facing a cooperator, and a cooperator facing a defector might be better off than two defectors).
On the other hand, this facilitative effect is limited by violations ofR > P, belonging to the
so-called social dilemma [50, 51], because then two defectors might be better off than two
cooperators, which again gives the winning edge to the defecting strategy, and hence results
in a resonant dependence of cooperation fitness onσ [20]. Although being fairly simple, the
described explanation outlines a general mechanism of cooperation promotion in the spatial
prisoner’s dilemma game, thus giving another example of noise-guided evolution relying on the
threshold duality in evolutionary processes.

4. Summary

In sum, we provide conclusive evidence that the threshold duality is crucial for the observation
of noise-induced resonances in evolutionary processes. Particularly, we show that a reticulate
six-species predator–prey model with heterogeneous invasion probabilities possesses a single
parameter that is able to guide the system from a noise frigid to a noise susceptible state, thereby
relying exclusively on the emergence of threshold duality. The phenomenon revealed by MC
simulations can be verified by a four-point cluster DMF approximation, thus providing ample
evidence that the reported noise-driven evolution within cyclical interactions is heavily rooted in
the short-range correlation of the spatial distribution. This conjecture is additionally supported
by studying the evolution of species on different regular graphs, and confirmed by the fact that
the phenomenon of noise-guided evolution weakens as the coordination number of the host
lattice increases. While the observations in the studied model are related to the system-specific
non-monotonous phase separation line between the two defensive alliances, we note that the
general concept is valid also in the framework of evolutionary game theory, thus suggesting it
may be widely applicable in various fields of research ranging from economy to ecology.
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