229 research outputs found

    Beware of fake AGNs

    Full text link
    In the BPT diagram, the distribution of the emission-line galaxies from the Sloan Digital Sky Survey (SDSS) evokes the wings of a seagull. Traditionally, galaxies in the right wing are considered to host AGNs. Our study of the stellar populations of SDSS galaxies showed that about1/4 of galaxies thought to host LINERS are in fact "retired galaxies", i.e. galaxies that stopped forming stars and are ionized by hot post-AGB stars and white dwarfs (Stasinska et al. 2008). When including the galaxies that lack some of the lines needed to place them in the BPT diagram the fraction of retired galaxies is even larger (Cid Fernandes et al., 2009, arXiv:0912.1376)Comment: to be published in "Co-evolution of central black holes and galaxies: feeding and feed-back" Proceedings IAU Symposium No. 267, Peterson, Rachel Somerville, & Thaisa Storchi-Bergmann ed

    BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semi-strong lines

    Full text link
    We present BOND, a Bayesian code to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semi-strong emission lines. While strong lines ratios alone ([O III]/Hbeta, [O II]/Hbeta and [N II]/Hbeta) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hbeta pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O vs O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.Comment: MNRAS in press; 21 pages, 22 figures, 2 tables; code, data and results available at http://bond.ufsc.b

    The chemical composition of the Orion star forming region: stars, gas and dust

    Full text link
    We present a summary of main results from the studies performed in the series of papers "The chemical composition of the Orion star forming region". We reinvestigate the chemical composition of B-type stars in the Orion OB1 association by means of state-of-the-art stellar atmosphere codes, atomic models and techniques, and compare the resulting abundances with those obtained from the emission line spectra of the Orion nebula (M42), and recent determinations of the Solar chemical composition.Comment: 5 pages, 4 figures, 2 tables. Poster contribution to the proceedings of the LIAC2010 conference "The multi-wavelength view of hot, massive stars

    The ionizing radiation from massive stars and its impact on H ii regions: results from modern model atmospheres

    Get PDF
    We present a detailed comparison of the ionizing spectral energy distributions (SEDs) predicted by four modern stellar atmosphere codes, tlusty, cmfgen, wm-basic and fastwind. We consider three sets of stellar parameters representing a late O-type dwarf (O9.5 V), a mid-O-type (O7 V) dwarf and an early O-type dwarf (O5.5 V). We explore two different possibilities for such a comparison, following what we called evolutionary and observational approaches: in the evolutionary approach, one compares the SEDs of stars defined by the same values of Teff and log g; in the observational approach, the models to be compared do not necessarily have the same Teff and log g, but produce similar H and He i-ii optical lines. We find that there is a better agreement, in terms of Q(H0), the ratio Q(He0)/Q(H0) and the shape of the SEDs predicted by the four codes in the spectral range between 13 and 30 eV, when models are compared following the observational approach. However, even in this case, large differences are found at higher energies. We then discuss how the differences in the SEDs may affect the overall properties of surrounding nebulae in terms of temperature and ionization structure. We find that the effect over the nebular temperature is not larger than 300-350 K. Contrarily, the different SEDs produce significantly different nebular ionization structures. This will lead to important consequences on the establishment of the ionization correction factors that are used in the abundance determination of H ii regions, as well as in the characterization of the ionizing stellar population from nebular line ratio

    Retired galaxies: not to be forgotten in the quest of the star formation -- AGN connection

    Full text link
    We propose a fresh look at the Main Galaxy Sample of the Sloan Digital Sky Survey by packing the galaxies in stellar mass and redshift bins. We show how important it is to consider the emission-line equivalent widths, in addition to the commonly used emission-line ratios, to properly identify retired galaxies (i.e. galaxies that have stopped forming stars and are ionized by their old stellar populations) and not mistake them for galaxies with low-level nuclear activity. We find that the proportion of star-forming galaxies decreases with decreasing redshift in each mass bin, while that of retired galaxies increases. Galaxies with M>1011.5MM_\star > 10^{11.5} M_\odot have formed all their stars at redshift larger than 0.4. The population of AGN hosts is never dominant for galaxy masses larger than 1010M10^{10} M_\odot. We warn about the effects of stacking galaxy spectra to discuss galaxy properties. We estimate the lifetimes of active galactic nuclei (AGN) relying entirely on demographic arguments --- i.e. without any assumption on the AGN radiative properties. We find upper-limit lifetimes of about 1--5 Gyr for detectable AGN in galaxies with masses between 101010^{10}--1012M10^{12} M_\odot. The lifetimes of the AGN-dominated phases are a few 10810^8 yr. Finally, we compare the star-formation histories of star-forming, AGN and retired galaxies as obtained by the spectral synthesis code STARLIGHT. Once the AGN is turned on it inhibits star formation for the next \sim 0.1 Gyr in galaxies with masses around 1010M10^{10} M_\odot, \sim 1 Gyr in galaxies with masses around 1011M10^{11} M_\odot.Comment: accepted for MNRAS figure resolution has been degraded with respect to what will be published in MNRA

    The many faces of LINER-like galaxies: a WISE view

    Full text link
    We use the SDSS and WISE surveys to investigate the real nature of galaxies defined as LINERs in the BPT diagram. After establishing a mid-infrared colour W2-W3 = 2.5 as the optimal separator between galaxies with and without star formation, we investigate the loci of different galaxy classes in the W_{Ha} versus W2-W3 space. We find that: (1) A large fraction of LINER-like galaxies are emission-line retired galaxies, i.e galaxies which have stopped forming stars and are powered by hot low-mass evolved stars (HOLMES). Their W2-W3 colours show no sign of star formation and their Ha equivalent widths, W_{Ha}, are consistent with ionization by their old stellar populations. (2) Another important fraction have W2-W3 indicative of star formation. This includes objects located in the supposedly `pure AGN' zone of the BPT diagram. (3) A smaller fraction of LINER-like galaxies have no trace of star formation from W2-W3 and a high W_{Ha}, pointing to the presence of an AGN. (4) Finally, a few LINERs tagged as retired by their W_{Ha} but with W2-W3 values indicative of star formation are late-type galaxies whose SDSS spectra cover only the old `retired' bulge. This reinforces the view that LINER-like galaxies are a mixed bag of objects involving different physical phenomena and observational effects thrusted into the same locus of the BPT diagram.Comment: Accepted for publication in MNRAS; 9 pages, 6 figure

    Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    Get PDF
    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation and detection of genuine multipartite entanglement between mesoscopic atomic ensembles. Our results extend in a non trivial way the EPR entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature {\bf 413}, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.Comment: 8 pages, 6 figure

    Ionization of the diffuse gas in galaxies: Hot low-mass evolved stars at work

    Get PDF
    We revisit the question of the ionization of the diffuse medium in late type galaxies, by studying NGC 891, the prototype of edge-on spiral galaxies. The most important challenge for the models considered so far was the observed increase of [OIII]/Hbeta, [OII]/Hbeta, and [NII]/Halpha with increasing distance to the galactic plane. We propose a scenario based on the expected population of massive OB stars and hot low-mass evolved stars (HOLMES) in this galaxy to explain this observational fact. In the framework of this scenario we construct a finely meshed grid of photoionization models. For each value of the galactic latitude z we look for the models which simultaneously fit the observed values of the [OIII]/Hbeta, [OII]/Hbeta, and [NII]/Halpha ratios. For each value of z we find a range of solutions which depends on the value of the oxygen abundance. The models which fit the observations indicate a systematic decrease of the electron density with increasing z. They become dominated by the HOLMES with increasing z only when restricting to solar oxygen abundance models, which argues that the metallicity above the galactic plane should be close to solar. They also indicate that N/O increases with increasing z.Comment: Accepted for publication in MNRA
    corecore