418 research outputs found

    Positive solutions of Schr\"odinger equations and fine regularity of boundary points

    Full text link
    Given a Lipschitz domain Ω\Omega in RN{\mathbb R} ^N and a nonnegative potential VV in Ω\Omega such that V(x) d(x,∂Ω)2V(x)\, d(x,\partial \Omega)^2 is bounded in Ω\Omega we study the fine regularity of boundary points with respect to the Schr\"odinger operator LV:=Δ−VL_V:= \Delta -V in Ω\Omega . Using potential theoretic methods, several conditions equivalent to the fine regularity of z∈∂Ωz \in \partial \Omega are established. The main result is a simple (explicit if Ω\Omega is smooth) necessary and sufficient condition involving the size of VV for zz to be finely regular. An essential intermediate result consists in a majorization of ∫A∣ud(.,∂Ω)∣2 dx\int_A | {\frac {u} {d(.,\partial \Omega)}} | ^2\, dx for uu positive harmonic in Ω\Omega and A⊂ΩA \subset \Omega . Conditions for almost everywhere regularity in a subset AA of ∂Ω \partial \Omega are also given as well as an extension of the main results to a notion of fine L1∣L0{\mathcal L}_1 | {\mathcal L}_0-regularity, if Lj=L−Vj{\mathcal L}_j={\mathcal L}-V_j, V0, V1V_0,\, V_1 being two potentials, with V0≤V1V_0 \leq V_1 and L{\mathcal L} a second order elliptic operator.Comment: version 1. 23 pages version 3. 28 pages. Mainly a typo in Theorem 1.1 is correcte

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi

    3D Reconstruction for Partial Data Electrical Impedance Tomography Using a Sparsity Prior

    Get PDF
    In electrical impedance tomography the electrical conductivity inside a physical body is computed from electro-static boundary measurements. The focus of this paper is to extend recent result for the 2D problem to 3D. Prior information about the sparsity and spatial distribution of the conductivity is used to improve reconstructions for the partial data problem with Cauchy data measured only on a subset of the boundary. A sparsity prior is enforced using the â„“1\ell_1 norm in the penalty term of a Tikhonov functional, and spatial prior information is incorporated by applying a spatially distributed regularization parameter. The optimization problem is solved numerically using a generalized conditional gradient method with soft thresholding. Numerical examples show the effectiveness of the suggested method even for the partial data problem with measurements affected by noise.Comment: 10 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1405.655

    Analysis of optimal control problems of semilinear elliptic equations by BV-functions

    Get PDF
    Optimal control problems for semilinear elliptic equations with control costs in the space of bounded variations are analysed. BV-based optimal controls favor piecewise constant, and hence ’simple’ controls, with few jumps. Existence of optimal controls, necessary and sufficient optimality conditions of first and second order are analysed. Special attention is paid on the effect of the choice of the vector norm in the definition of the BV-seminorm for the optimal primal and adjoined variables.The first author was partially supported by Spanish Ministerio de Economía, Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P. The second was partially supported by the ERC advanced grant 668998 (OCLOC) under the EUs H2020 research program

    A review on sparse solutions in optimal control of partial differential equations

    Get PDF
    In this paper a review of the results on sparse controls for partial differential equations is presented. There are two different approaches to the sparsity study of control problems. One approach consists of taking functions to control the system, putting in the cost functional a convenient term that promotes the sparsity of the optimal control. A second approach deals with controls that are Borel measures and the norm of the measure is involved in the cost functional. The use of measures as controls allows to obtain optimal controls supported on a zero Lebesgue measure set, which is very interesting for practical implementation. If the state equation is linear, then we can carry out a complete analysis of the control problem with measures. However, if the equation is nonlinear the use of measures to control the system is still an open problem, in general, and the use of functions to control the system seems to be more appropriate.This work was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2014-57531-P

    Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates

    Full text link
    We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP) theory and investigate the properties of the ground state of the theory for rotational speeds close to the critical speed for vortex nucleation. While one could expect that the vortex distribution should be homogeneous within the condensate we prove by means of an asymptotic analysis in the strongly interacting (Thomas-Fermi) regime that it is not. More precisely we rigorously derive a formula due to Sheehy and Radzihovsky [Phys. Rev. A 70, 063620(R) (2004)] for the vortex distribution, a consequence of which is that the vortex distribution is strongly inhomogeneous close to the critical speed and gradually homogenizes when the rotation speed is increased. From the mathematical point of view, a novelty of our approach is that we do not use any compactness argument in the proof, but instead provide explicit estimates on the difference between the vorticity measure of the GP ground state and the minimizer of a certain renormalized energy functional.Comment: 41 pages, journal ref: Communications in Mathematical Physics: Volume 321, Issue 3 (2013), Page 817-860, DOI : 10.1007/s00220-013-1697-
    • …
    corecore