445 research outputs found

    Random matrix models with log-singular level confinement: method of fictitious fermions

    Full text link
    Joint distribution function of N eigenvalues of U(N) invariant random-matrix ensemble can be interpreted as a probability density to find N fictitious non-interacting fermions to be confined in a one-dimensional space. Within this picture a general formalism is developed to study the eigenvalue correlations in non-Gaussian ensembles of large random matrices possessing non-monotonic, log-singular level confinement. An effective one-particle Schroedinger equation for wave-functions of fictitious fermions is derived. It is shown that eigenvalue correlations are completely determined by the Dyson's density of states and by the parameter of the logarithmic singularity. Closed analytical expressions for the two-point kernel in the origin, bulk, and soft-edge scaling limits are deduced in a unified way, and novel universal correlations are predicted near the end point of the single spectrum support.Comment: 13 pages (latex), Presented at the MINERVA Workshop on Mesoscopics, Fractals and Neural Networks, Eilat, Israel, March 199

    Entanglement and nonclassicality for multi-mode radiation field states

    Full text link
    Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multi-mode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beamsplitters, in a transparent manner. For single mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beamsplitter, these conditions turn exactly into signatures of NPT entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two--mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beamsplitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three--mode beamsplitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.Comment: Latex, 46 page

    Total Widths And Slopes From Complex Regge Trajectories

    Get PDF
    Maximally complex Regge trajectories are introduced for which both Re α(s)\alpha(s) and Im α(s)\alpha(s) grow as s1ϵs^{1-\epsilon} (ϵ\epsilon small and positive). Our expression reduces to the standard real linear form as the imaginary part (proportional to ϵ\epsilon) goes to zero. A scaling formula for the total widths emerges: ΓTOT/M\Gamma_{TOT}/M\to constant for large M, in very good agreement with data for mesons and baryons. The unitarity corrections also enhance the space-like slopes from their time-like values, thereby resolving an old problem with the ρ\rho trajectory in πN\pi N charge exchange. Finally, the unitarily enhanced intercept, αρ0.525\alpha_{\rho}\approx 0.525, \nolinebreak is in good accord with the Donnachie-Landshoff total cross section analysis.Comment: 9 pages, 3 Figure

    Two-band random matrices

    Full text link
    Spectral correlations in unitary invariant, non-Gaussian ensembles of large random matrices possessing an eigenvalue gap are studied within the framework of the orthogonal polynomial technique. Both local and global characteristics of spectra are directly reconstructed from the recurrence equation for orthogonal polynomials associated with a given random matrix ensemble. It is established that an eigenvalue gap does not affect the local eigenvalue correlations which follow the universal sine and the universal multicritical laws in the bulk and soft-edge scaling limits, respectively. By contrast, global smoothed eigenvalue correlations do reflect the presence of a gap, and are shown to satisfy a new universal law exhibiting a sharp dependence on the odd/even dimension of random matrices whose spectra are bounded. In the case of unbounded spectrum, the corresponding universal `density-density' correlator is conjectured to be generic for chaotic systems with a forbidden gap and broken time reversal symmetry.Comment: 12 pages (latex), references added, discussion enlarge

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Multicritical microscopic spectral correlators of hermitian and complex matrices

    Get PDF
    We find the microscopic spectral densities and the spectral correlators associated with multicritical behavior for both hermitian and complex matrix ensembles, and show their universality. We conjecture that microscopic spectral densities of Dirac operators in certain theories without spontaneous chiral symmetry breaking may belong to these new universality classes

    Generating Converging Bounds to the (Complex) Discrete States of the P2+iX3+iαXP^2 + iX^3 + i\alpha X Hamiltonian

    Full text link
    The Eigenvalue Moment Method (EMM), Handy (2001), Handy and Wang (2001)) is applied to the HαP2+iX3+iαXH_\alpha \equiv P^2 + iX^3 + i\alpha X Hamiltonian, enabling the algebraic/numerical generation of converging bounds to the complex energies of the L2L^2 states, as argued (through asymptotic methods) by Delabaere and Trinh (J. Phys. A: Math. Gen. {\bf 33} 8771 (2000)).Comment: Submitted to J. Phys.

    Coherent states of a charged particle in a uniform magnetic field

    Full text link
    The coherent states are constructed for a charged particle in a uniform magnetic field based on coherent states for the circular motion which have recently been introduced by the authors.Comment: 2 eps figure

    Extension of a Spectral Bounding Method to Complex Rotated Hamiltonians, with Application to p2ix3p^2-ix^3

    Full text link
    We show that a recently developed method for generating bounds for the discrete energy states of the non-hermitian ix3-ix^3 potential (Handy 2001) is applicable to complex rotated versions of the Hamiltonian. This has important implications for extension of the method in the analysis of resonant states, Regge poles, and general bound states in the complex plane (Bender and Boettcher (1998)).Comment: Submitted to J. Phys.

    The smallest eigenvalue of Hankel matrices

    Full text link
    Let H_N=(s_{n+m}),n,m\le N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue lambda_N of H_N. It is proved that lambda_N has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda_N can be arbitrarily slow or arbitrarily fast. In the indeterminate case, where lambda_N is known to be bounded below by a positive constant, we prove that the limit of the n'th smallest eigenvalue of H_N for N tending to infinity tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed
    corecore