Nonclassicality in the sense of quantum optics is a prerequisite for
entanglement in multi-mode radiation states. In this work we bring out the
possibilities of passing from the former to the latter, via action of
classicality preserving systems like beamsplitters, in a transparent manner.
For single mode states, a complete description of nonclassicality is available
via the classical theory of moments, as a set of necessary and sufficient
conditions on the photon number distribution. We show that when the mode is
coupled to an ancilla in any coherent state, and the system is then acted upon
by a beamsplitter, these conditions turn exactly into signatures of NPT
entanglement of the output state. Since the classical moment problem does not
generalize to two or more modes, we turn in these cases to other familiar
sufficient but not necessary conditions for nonclassicality, namely the Mandel
parameter criterion and its extensions. We generalize the Mandel matrix from
one-mode states to the two-mode situation, leading to a natural classification
of states with varying levels of nonclassicality. For two--mode states we
present a single test that can, if successful, simultaneously show
nonclassicality as well as NPT entanglement. We also develop a test for NPT
entanglement after beamsplitter action on a nonclassical state, tracing
carefully the way in which it goes beyond the Mandel nonclassicality test. The
result of three--mode beamsplitter action after coupling to an ancilla in the
ground state is treated in the same spirit. The concept of genuine tripartite
entanglement, and scalar measures of nonclassicality at the Mandel level for
two-mode systems, are discussed. Numerous examples illustrating all these
concepts are presented.Comment: Latex, 46 page