1,034 research outputs found

    Endoplasmic Reticulum Stress Is Reduced in Tissues of Obese Subjects After Weight Loss

    Get PDF
    OBJECTIVE—Obesity is associated with insulin resistance and type 2 diabetes, although the mechanisms linking these pathologies remain undetermined. Recent studies in rodent models revealed endoplasmic reticulum (ER) stress in adipose and liver tissues and demonstrated that ER stress could cause insulin resistance. Therefore, we tested whether these stress pathways were also present in obese human subjects and/or regulated by weight loss

    Macrophage Mal1 Deficiency Suppresses Atherosclerosis in Low-Density Lipoprotein Receptor -Null Mice by Activating Peroxisome Proliferator-Activated Receptor-g-Regulated Genes

    Get PDF
    Cataloged from PDF version of article.Objective-The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear. Methods and Results-We transplanted wild-type (WT), Mal1(-/-), or aP2(-/-) bone marrow into low-density lipoprotein receptor-null (LDLR(-/-)) mice and fed them a Western diet for 8 weeks. Mal1(-/-)-> LDLR(-/-) mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT -> LDLR(-/-) mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-gamma (PPAR gamma) activity and upregulation of a PPAR gamma-related cholesterol trafficking gene, CD36. Mal1(-/-) macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1(-/-)-> LDLR(-/-) mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT -> LDLR(-/-) mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1(-/-)-> LDLR(-/-) mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes. Conclusion-Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPAR gamma activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions. (Arterioscler Thromb Vasc Biol. 2011;31:1283-1290.

    A Predominant Role for Parenchymal c-Jun Amino Terminal Kinase (JNK) in the Regulation of Systemic Insulin Sensitivity

    Get PDF
    It has been established that c-Jun N-terminal kinase 1 (JNK1) is essential to the pathogenesis of insulin resistance and type 2 diabetes. Although JNK influences inflammatory signaling pathways, it remains unclear whether its activity in macrophages contributes to adipose tissue inflammation and ultimately to the regulation of systemic metabolism. To address whether the action of this critical inflammatory kinase in bone marrow-derived elements regulates inflammatory responses in obesity and is sufficient and necessary for the deterioration of insulin sensitivity, we performed bone marrow transplantation studies with wild type and JNK1-deficient mice. These studies illustrated that JNK1-deficiency in the bone marrow-derived elements (BMDE) was insufficient to impact macrophage infiltration or insulin sensitivity despite modest changes in the inflammatory profile of adipose tissue. Only when the parenchymal elements lacked JNK1 could we demonstrate a significant increase in systemic insulin sensitivity. These data indicate that while the JNK1 activity in BMDE is involved in metabolic regulation and adipose milieu, it is epistatic to JNK1 activity in the parenchymal tissue for regulation of metabolic homeostasis

    Relation of Abdominal Fat Depots to Systemic Markers of Inflammation in Type 2 Diabetes

    Get PDF
    OBJECTIVE: Both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) have been linked to systemic inflammation in nondiabetic cohorts. We examined the relationships between VAT and SAT and systemic inflammatory markers in a large well-characterized cohort of subjects with type 2 diabetes. RESEARCH DESIGN AND METHODS: Three hundred eighty-two subjects with type 2 diabetes in the CHICAGO (Carotid Intima-Media Thickness in Atherosclerosis Using Pioglitazone) study cohort underwent abdominal computed tomography to determine SAT and VAT distribution. Fasting blood was obtained for measurement of inflammatory markers. The relationships between inflammatory markers and BMI, SAT, and VAT were examined using regression models adjusted for age, sex, diabetes treatment, duration of diabetes, smoking, statin use, and A1C. RESULTS: VAT was positively related to CRP, monocyte chemoattractant protein (MCP), intracellular adhesion molecule (ICAM)-1, and plasminogen activator inhibitor type 1 (PAI-1) antigen before adjustment for BMI. After adjustment for BMI, the relationship to CRP was lost but positive associations with MCP (P < 0.01), PAI-1 (P < 0.0001), ICAM-1 (P < 0.01), and vascular cell adhesion molecule (P = 0.01) were evident. BMI was positively related to CRP (P < 0.0001) and IL-6 (P < 0.01) even after adjustment for VAT and SAT. SAT was not related to any inflammatory marker after adjustment for BMI. CONCLUSIONS: In this large group of subjects with type 2 diabetes, BMI was most strongly associated with CRP and IL-6 levels. SAT was not associated with markers of systemic inflammation. The size of the VAT depot provided information additional to that provided by BMI regarding inflammatory markers that are strongly related to vascular wall remodeling and coagulation. Our findings suggest that adipose tissue distribution remains an important determinant of systemic inflammation in type 2 diabetes.National Institutes of Health (DK-71711); University of Illinois at Chicag

    Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity leads to an increase in inflammation and insulin resistance. This study determined antioxidant activity of flaxseed and its role in inflammation and insulin resistance in obese glucose intolerant people.</p> <p>Methods</p> <p>Using a randomized crossover design, nine obese glucose intolerant people consumed 40 g ground flaxseed or 40 g wheat bran daily for 12 weeks with a 4-week washout period. Plasma inflammation biomarkers (CRP, TNF-α, and IL-6), glucose, insulin, and thiobaribituric acid reactive substance (TBARS) were measured before and after of each supplementation.</p> <p>Results</p> <p>Flaxseed supplementation decreased TBARS (p = 0.0215) and HOMA-IR (p = 0.0382). Flaxseed or wheat bran supplementation did not change plasma inflammatory biomarkers. A positive relationship was found between TBARS and HOMA-IR (r = 0.62, p = 0.0003).</p> <p>Conclusions</p> <p>The results of the study weakly support that decreased insulin resistance might have been secondary to antioxidant activity of flaxseed. However, the mechanism(s) of decreased insulin resistance by flaxseed should be further determined using flaxseed lignan.</p

    Relationship of Adiposity and Insulin Resistance Mediated by Inflammation in a Group of Overweight and Obese Chilean Adolescents

    Get PDF
    The mild chronic inflammatory state associated with obesity may be an important link between adiposity and insulin resistance (IR). In a sample of 137 overweight and obese Chilean adolescents, we assessed associations between high-sensitivity C-reactive protein (hs-CRP), IR and adiposity; explored sex differences; and evaluated whether hs-CRP mediated the relationship between adiposity and IR. Positive relationships between hs-CRP, IR and 2 measures of adiposity were found. Hs-CRP was associated with waist circumference (WC) in boys and fat mass index (FMI) in girls. Using path analysis, we found that hs-CRP mediated the relationship between adiposity (WC and FMI) and the homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.05) in both sexes. Our novel finding is that inflammation statistically mediated the well described link between increased adiposity and IR

    Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity.

    Get PDF
    The endoplasmic reticulum (ER) is the main site of protein and lipid synthesis, membrane biogenesis, xenobiotic detoxification and cellular calcium storage, and perturbation of ER homeostasis leads to stress and the activation of the unfolded protein response. Chronic activation of ER stress has been shown to have an important role in the development of insulin resistance and diabetes in obesity. However, the mechanisms that lead to chronic ER stress in a metabolic context in general, and in obesity in particular, are not understood. Here we comparatively examined the proteomic and lipidomic landscape of hepatic ER purified from lean and obese mice to explore the mechanisms of chronic ER stress in obesity. We found suppression of protein but stimulation of lipid synthesis in the obese ER without significant alterations in chaperone content. Alterations in ER fatty acid and lipid composition result in the inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and ER stress. Correcting the obesity-induced alteration of ER phospholipid composition or hepatic Serca overexpression in vivo both reduced chronic ER stress and improved glucose homeostasis. Hence, we established that abnormal lipid and calcium metabolism are important contributors to hepatic ER stress in obesity

    Role of metabolically active hormones in the insulin resistance associated with short-term glucocorticoid treatment

    Get PDF
    BACKGROUND: The mechanisms by which glucocorticoid therapy promotes obesity and insulin resistance are incompletely characterized. Modulations of the metabolically active hormones, tumour necrosis factor alpha (TNF alpha), ghrelin, leptin and adiponectin are all implicated in the development of these cardiovascular risk factors. Little is known about the effects of short-term glucocorticoid treatment on levels of these hormones. RESEARCH METHODS AND PROCEDURES: Using a blinded, placebo-controlled approach, we randomised 25 healthy men (mean (SD) age: 24.2 (5.4) years) to 5 days of treatment with either placebo or oral dexamethasone 3 mg twice daily. Fasting plasma TNFα, ghrelin, leptin and adiponectin were measured before and after treatment. RESULTS: Mean changes in all hormones were no different between treatment arms, despite dexamethasone-related increases in body weight, blood pressure, HDL cholesterol and insulin. Changes in calculated indices of insulin sensitivity (HOMA-S, insulin sensitivity index) were strongly related to dexamethasone treatment (p < 0.001). DISCUSSION: Our data do not support a role for TNF alpha, ghrelin, leptin or adiponectin in the insulin resistance associated with short-term glucocorticoid treatment

    The macrophage at the intersection of immunity and metabolism in obesity

    Get PDF
    Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe. Identifying the mechanisms involved in its development and propagation will help the development of preventative and therapeutic strategies that may help control its rising rates
    corecore