49 research outputs found

    Spatial correlation of two-dimensional Bosonic multimode condensates

    Get PDF
    This research has been supported by the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” by Navy/SPAWAR Grant No. N66001-09-1-2024, and by National Science Foundation Grant No. ECCS-09 25549. W.H.N. acknowledges a Gerhard Casper Stanford Graduate Fellowship for support.The Berezinskii-Kosterlitz-Thouless (BKT) theorem predicts that two-dimensional Bosonic condensates exhibit quasi-long-range order which is characterized by a slow decay of the spatial coherence. However previous measurements on exciton-polarition condensates revealed that their spatial coherence can decay faster than allowed under the BKT theory, and different theoretical explanations have already been proposed. Through theoretical and experimental study of exciton-polariton condensates, we show that the fast decay of the coherence can be explained through the simultaneous presence of multiple modes in the condensate.Publisher PDFPeer reviewe

    Single vortex-antivortex pair in an exciton polariton condensate

    Full text link
    In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, a superfluid phase is predicted for a Bose liquid. The stabilization of phase in this superfluid regime is achieved by the formation of bound vortex-antivortex pairs. It is believed that several different systems share this common behaviour, when the parameter describing their ordered state has two degrees of freedom, and the theory has been tested for some of them. However, there has been no direct experimental observation of the phase stabilization mechanism by a bound pair. Here we present an experimental technique that can identify a single vortex-antivortex pair in a two-dimensional exciton polariton condensate. The pair is generated by the inhomogeneous pumping spot profile, and is revealed in the time-integrated phase maps acquired using Michelson interferometry, which show that the condensate phase is only locally disturbed. Numerical modelling based on open dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite different in this non-equilibrium system compared to atomic condensates. Our results demonstrate that the exciton polariton condensate is a unique system for studying two-dimensional superfluidity in a previously inaccessible regime

    Signature of the microcavity exciton-polariton relaxation mechanism in the polarization of emitted light

    Full text link
    We have performed real and momentum space spin-dependent spectroscopy of spontaneously formed exciton polariton condensates for a non-resonant pumping scheme. Under linearly polarized pump, our results can be understood in terms of spin-dependent Boltzmann equations in a two-state model. This suggests that relaxation into the ground state occurs after multiple phonon scattering events and only one polariton-polariton scattering. For the circular pumping case, in which only excitons of one spin are injected, a bottleneck effect is observed, implying inefficient relaxation.Comment: 7 pages, 7 figure

    Temperature and wavelength drift tolerant WDM transmission and routing in on-chip silicon photonic interconnects

    Get PDF
    We demonstrate a temperature and wavelength shift resilient silicon transmission and routing interconnect system suitable for multi-socket interconnects, utilizing a dual-strategy CLIPP feedback circuitry that safeguards the operating point of the constituent photonic building blocks along the entire on-chip transmission-multiplexing-routing chain. The control circuit leverages a novel control power-independent and calibration-free locking strategy that exploits the 2nd derivative of ring resonator modulators (RMs) transfer function to lock them close to the point of minimum transmission penalty. The system performance was evaluated on an integrated Silicon Photonics 2-socket demonstrator, enforcing control over a chain of RM-MUX-AWGR resonant structures and stressed against thermal and wavelength shift perturbations. The thermal and wavelength stress tests ranged from 27 degrees C to 36 degrees C and 1309.90 nm to 1310.85 nm and revealed average eye diagrams Q-factor values of 5.8 and 5.9 respectively, validating the system robustness to unstable environments and fabrication variations. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen

    Role of supercurrents on vortices formation in polariton condensates

    Full text link
    Observation of quantized vortices in non-equilibrium polariton condensates has been reported either by spontaneous formation and pinning in the presence of disorder or by imprinting them onto the signal or idler of an optical parametric oscillator (OPO). Here, we report a detailed analysis of the creation and annihilation of polariton vortex-antivortex pairs in the signal state of a polariton OPO by means of a short optical Gaussian pulse at a certain finite pump wave-vector. A time-resolved, interferometric analysis of the emission allows us to extract the phase of the perturbed condensate and to reveal the dynamics of the supercurrents created by the pulsed probe. This flow is responsible for the appearance of the topological defects when counter-propagating to the underlying currents of the OPO signal.Comment: 8 pages, 5 figure

    Vortices in polariton OPO superfluids

    Get PDF
    This chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and numerical modelling, the latter being necessary for the description of finite size systems. Pattern formation is typical in systems driven away from equilibrium. Similarly, we find that uniform OPO solutions can be unstable to the spontaneous formation of quantised vortices. However, metastable vortices can only be injected externally into an otherwise stable symmetric state, and their persistence is due to the OPO superfluid properties. We discuss how the currents charactering an OPO play a crucial role in the occurrence and dynamics of both metastable and spontaneous vortices.Comment: 40 pages, 16 figure

    Symmetry-breaking Effects for Polariton Condensates in Double-Well Potentials

    Get PDF
    We study the existence, stability, and dynamics of symmetric and anti-symmetric states of quasi-one-dimensional polariton condensates in double-well potentials, in the presence of nonresonant pumping and nonlinear damping. Some prototypical features of the system, such as the bifurcation of asymmetric solutions, are similar to the Hamiltonian analog of the double-well system considered in the realm of atomic condensates. Nevertheless, there are also some nontrivial differences including, e.g., the unstable nature of both the parent and the daughter branch emerging in the relevant pitchfork bifurcation for slightly larger values of atom numbers. Another interesting feature that does not appear in the atomic condensate case is that the bifurcation for attractive interactions is slightly sub-critical instead of supercritical. These conclusions of the bifurcation analysis are corroborated by direct numerical simulations examining the dynamics of the system in the unstable regime.MICINN (Spain) project FIS2008- 0484

    Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    Get PDF
    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC reaches 99% and beyond, it has been limited to 60-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent "dark" nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed - the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time

    Topological order and thermal equilibrium in polariton condensates

    Get PDF
    We report the observation of the Berezinskii-Kosterlitz-Thouless transition for a 2D gas of exciton-polaritons, and through the joint measurement of the first-order coherence both in space and time we bring compelling evidence of a thermodynamic equilibrium phase transition in an otherwise open driven/dissipative system. This is made possible thanks to long polariton lifetimes in high-quality samples with small disorder and in a reservoir-free region far away from the excitation spot, that allow topological ordering to prevail. The observed quasi-ordered phase, characteristic for an equilibrium 2D bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. Finally, measurements in the weak-coupling regime confirm that polariton condensates are fundamentally different from photon lasers and constitute genuine quantum degenerate macroscopic states
    corecore