3,241 research outputs found

    Cognitive appraisal of environmental stimuli induces emotion-like states in fish

    Get PDF
    The occurrence of emotions in non-human animals has been the focus of debate over the years. Recently, an interest in expanding this debate to non-tetrapod vertebrates and to invertebrates has emerged. Within vertebrates, the study of emotion in teleosts is particularly interesting since they represent a divergent evolutionary radiation from that of tetrapods, and thus they provide an insight into the evolution of the biological mechanisms of emotion. We report that Sea Bream exposed to stimuli that vary according to valence (positive, negative) and salience (predictable, unpredictable) exhibit different behavioural, physiological and neuromolecular states. Since according to the dimensional theory of emotion valence and salience define a two-dimensional affective space, our data can be interpreted as evidence for the occurrence of distinctive affective states in fish corresponding to each the four quadrants of the core affective space. Moreover, the fact that the same stimuli presented in a predictable vs. unpredictable way elicited different behavioural, physiological and neuromolecular states, suggests that stimulus appraisal by the individual, rather than an intrinsic characteristic of the stimulus, has triggered the observed responses. Therefore, our data supports the occurrence of emotion-like states in fish that are regulated by the individual's perception of environmental stimuli.European Commission [265957 Copewell]; Fundacao para a Ciencia e Tecnologia [SFRH/BD/80029/2011, SFRH/BPD/72952/2010]info:eu-repo/semantics/publishedVersio

    An air-stable DPP-thieno-TTF copolymer for single-material solar cell devices and field effect transistors

    Get PDF
    Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor–acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV–visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 × 10–2 cm2/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%

    A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell

    Get PDF
    Cytosolic calcium machinery is one of the principal signaling mechanisms by which endothelial cells (ECs) respond to external stimuli during several biological processes, including vascular progression in both physiological and pathological conditions. Low concentrations of angiogenic factors (such as VEGF) activate in fact complex pathways involving, among others, second messengers arachidonic acid (AA) and nitric oxide (NO), which in turn control the activity of plasma membrane calcium channels. The subsequent increase in the intracellular level of the ion regulates fundamental biophysical properties of ECs (such as elasticity, intrinsic motility, and chemical strength), enhancing their migratory capacity. Previously, a number of continuous models have represented cytosolic calcium dynamics, while EC migration in angiogenesis has been separately approached with discrete, lattice-based techniques. These two components are here integrated and interfaced to provide a multiscale and hybrid Cellular Potts Model (CPM), where the phenomenology of a motile EC is realistically mediated by its calcium-dependent subcellular events. The model, based on a realistic 3-D cell morphology with a nuclear and a cytosolic region, is set with known biochemical and electrophysiological data. In particular, the resulting simulations are able to reproduce and describe the polarization process, typical of stimulated vascular cells, in various experimental conditions.Moreover, by analyzing the mutual interactions between multilevel biochemical and biomechanical aspects, our study investigates ways to inhibit cell migration: such strategies have in fact the potential to result in pharmacological interventions useful to disrupt malignant vascular progressio

    Affordances, constraints and information flows as ‘leverage points’ in design for sustainable behaviour

    Get PDF
    Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology

    Extracellular electrophysiological measurements of cooperative signals in astrocytes populations

    Get PDF
    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques.Portuguese Foundation for Science and Technology (FCT) [PTDC/EEI-AUT/5442/2014]; Instituto de Telecomunicacoes [UID/Multi/04326/2013]; Associated Laboratory - Institute of Nanoscience and Nanotechnology [POCI-01-0145-FEDER-016623]; [PTDC/CTM-NAN/3146/2014]info:eu-repo/semantics/publishedVersio

    Making drug harms: Punishments for drugs offenders who pose risks to children

    Get PDF
    Images of children are routinely used in discourses on drugs, offering a compelling rationale for adopting particular policy positions or legislative reforms. However, the importance of childhood to the constitution of drug harms, and the punishment and subjectification of drug users and offenders, have rarely been the subject of enquiry, whether within drug and alcohol studies, criminology or legal studies. Scholarship on criminal sentencing in England and Wales is also relatively sparse, and has been dominated by analyses of the ‘legal-rational’ logic of particular provisions or reforms. This paper, which relies on the premise that drugs and their effects are constituted through discourse, and are thus contingent, variable and unstable, identifies the ‘collateral realities’ (Law, 2011) that are enacted during legislative and judicial attempts to stabilize the harms caused by drugs to children and communities
    corecore